Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x+y+z=1\)
\(\Rightarrow\left(x+y+z\right)^2=1\)
Áp dụng BĐT Cauchy-schwar dưới dạng engel ta có :
\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\dfrac{9}{1}=9\)
\(\text{Ta có : }x+y+z=1\\ \Rightarrow\left(x+y+z\right)^2=1\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=1\\ \Rightarrow\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\\ =\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{x^2+2yz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{y^2+2xz}+\dfrac{x^2+y^2+z^2+2xy+2xz+2yz}{z^2+2xy}\\ =\dfrac{x^2+2yz}{x^2+2yz}+\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}+\dfrac{y^2+2xz}{y^2+2xz}+\dfrac{z^2+2xy}{y^2+2xz}+\dfrac{x^2+2yz}{z^2+2xy}+\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{z^2+2xy}\\ =1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\)Áp dụng \(BDT:\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
\(\Rightarrow1+\left(\dfrac{y^2+2xz}{x^2+2yz}+\dfrac{x^2+2yz}{y^2+2xz}\right)+\left(\dfrac{z^2+2xy}{x^2+2yz}+\dfrac{x^2+2yz}{z^2+2xy}\right)+1+\left(\dfrac{y^2+2xz}{z^2+2xy}+\dfrac{z^2+2xy}{y^2+2xz}\right)+1\\ \ge1+2+2+1+2+1\ge9\left(đpcm\right)\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}y^2+2xz=x^2+2yz\\z^2+2xy=x^2+2yz\\y^2+2xz=z^2+2xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2yz=x^2-2xz\\z^2-2yz=x^2-2xy\\y^2-2xy=z^2-2xz\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-2yx+z^2=x^2-2xz+z^2\\z^2-2yz+y^2=x^2-2xy+y^2\\y^2-2xy+x^2=z^2-2xz+x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-z\right)^2=\left(x-z\right)^2\\\left(z-y\right)^2=\left(x-y\right)^2\\\left(y-x\right)^2=\left(z-x\right)^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-z=x-z\\z-y=x-y\\y-x=z-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\z=x\\y=z\end{matrix}\right.\Leftrightarrow x=y=z\\\text{Mà } x+y+z=1\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ \Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\) với \(x;y;z>0\) và \(x+y+z=1\)
đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)
ÁP dụng bất đẳng thức AM-GM ta có:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)
Vậy \(MinP=1\Leftrightarrow x=y=z>0\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
@phynit em hiểu nguyên tắc đó. cái em càng không hiểu là các bạn bấm chọn. trong khi cái bước rất quan trọng thì đang bỏ lửng
Em suy nghĩ rất nhiều nhiều về cái đề này. không làm nổi-->theo dõi -->
A sẽ giải thích tại sao đặt được nhân tử vậy cho nhé
Ta có:
\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)
\(=xy\left(x-y\right)+y^2z-z^2y+z^2x-zx^2\)
\(=xy\left(x-y\right)+\left(y^2z-zx^2\right)+\left(z^2x-z^2y\right)\)
\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)
\(=\left(x-y\right)\left(\left(xy-zx\right)+\left(z^2-zy\right)\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
Cậu ta làm sai thì làm sao ngonhuminh với thầy phynit hiểu được
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)(x^2+2yz+y^2+2xz+z^2+2xy)\geq (x+y+z)^2\)
\(\Leftrightarrow P(x+y+z)^2\geq (x+y+z)^2\)
\(\Rightarrow P\geq 1\)
Vậy \(P_{\min}=1\)
Dấu bằng xảy ra khi \(x=y=z\)
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\)
Áp dụng BDT Cô-si : \(a^2+b^2\ge2ab\)
\(\Rightarrow\left\{{}\begin{matrix}y^2+z^2\ge2yz\\x^2+z^2\ge2xz\\x^2+y^2\ge2xy\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2\ge x^2+2yz>0\\x^2+y^2+z^2\ge y^2+2xz>0\\x^2+y^2+z^2\ge z^2+2xy>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{x^2+y^2+z^2}\le\dfrac{x^2}{x^2+2yz}\\\dfrac{y^2}{x^2+y^2+z^2}\le\dfrac{y^2}{y^2+2xz}\\\dfrac{z^2}{x^2+y^2+z^2}\le\dfrac{z^2}{z^2+2xy}\end{matrix}\right.\\ \Rightarrow P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\\ \ge\dfrac{x^2}{x^2+y^2+z^2}+\dfrac{y^2}{x^2+y^2+z^2}+\dfrac{z^2}{x^2+y^2+z^2}\\ \ge\dfrac{x^2+y^2+z^2}{x^2+y^2+z^2}\ge1\forall x;y;z\)
Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}y=z\\x=z\\x=y\end{matrix}\right.\Leftrightarrow x=y=z\)
Vậy \(P_{Min}=1\) khi \(x=y=z\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
dài đấy
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ < =>xy+yz+xz=0\\ < =>\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-yz\end{matrix}\right.\)
\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
cmtt
\(=>\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)
A = ...
= \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\)
=\(\dfrac{yz+xz+xy}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)
mà xy + yz + xz = 0
=> (1) = 0
=> a = 0
\(\dfrac{x^2-2xy+y^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)