\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+\dfrac{x+3}{2012}+\dfrac{x+4}{2011}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

Ta có : \(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+\dfrac{x+3}{2012}+\dfrac{x+4}{2011}=0\)

\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+\left(\dfrac{x+3}{2012}+1\right)+\left(\dfrac{x+4}{2011}+1\right)=4\)

\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}=4\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}\right)=4\) \(\Leftrightarrow\left(x+2015\right).0,002=4\) ( mik lấy gần bằng nha )

\(\Leftrightarrow x+2015=2000\Leftrightarrow x=-15\)

Vậy phương trình có nghiệm là x=-15

13 tháng 12 2018

\(\Rightarrow\frac{x}{2010}+\frac{x+1}{2011}+\frac{x+2}{2012}+\frac{x+3}{2013}+\frac{x+4}{2014}-5=0\)

\(\left(\frac{x}{2010}-1\right)+\left(\frac{x+1}{2011}-1\right)+\left(\frac{x+2}{2012}-1\right)\)\(+\left(\frac{x+3}{2013}-1\right)+\left(\frac{x+4}{2014}-1\right)=0\)

\(\frac{x-2010}{2010}+\frac{x-2010}{2011}+\frac{x-2010}{2012}+\frac{x-2010}{2013}+\frac{x-2010}{2014}=0\)

\(\left(x-2010\right).\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)=0\)

mà \(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\ne0\Rightarrow x+2010=0\Rightarrow x=-2010\)

Vậy x=-2010

14 tháng 12 2018

\(\dfrac{x}{2010}+\dfrac{x+1}{2011}+\dfrac{x+2}{2012}+\dfrac{x+3}{2013}+\dfrac{x+4}{2014}=5\)

\(\Leftrightarrow\left(\dfrac{x}{2010}-1\right)+\left(\dfrac{x+1}{2011}-1\right)+\left(\dfrac{x+2}{2012}-1\right)+\left(\dfrac{x+3}{2013}-1\right)+\left(\dfrac{x+4}{2014}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2010}{2010}+\dfrac{x-2010}{2011}+\dfrac{x-2010}{2012}+\dfrac{x-2010}{2013}+\dfrac{x-2010}{2014}=0\)

\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)=0\)

\(\Leftrightarrow x=2010\)

15 tháng 5 2018

\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)

\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)

\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)

\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)

\(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )

Nên \(x+2014\ge0\)

\(\Leftrightarrow x\ge-2014\)

Vậy

có 1 lỗi nhỏ

NV
21 tháng 2 2019

a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)

Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)

\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)

\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))

\(\Rightarrow x=-2015\)

30 tháng 11 2017

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}+\dfrac{x+2024}{2}=0\)

\(\Leftrightarrow(\dfrac{x+1}{2015}+1)+(\dfrac{x+2}{2014}+1)+(\dfrac{x+3}{2013}+1)+(\dfrac{x+4}{2012}+1)+\dfrac{x+2024}{2}-4=0\)\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}+\dfrac{x+2016}{2}=0\)\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}\right)=0\)

Hiển nhiên: \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}>0\)

\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)

26 tháng 3 2018

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

<=>\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

<=>\(\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

vì 1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 khác 0

=>x-2014=0<=>x=2014

bạn hiểu chứ?

26 tháng 3 2018

Xuyên Cúc: -1 tại vì còn phải tùy bài, mk phải làm thế nào để tử giống nhau, thì có trường hợp + có trường hợp -, cái đấy còn tùy

còn 1/2013...+... khác 0 vì chắc chắn nó sẽ khác 0, cái dãy số đấy k có chuyện bằng 0 đc , tớ cũng chả biết giải thích thế nào nữa == bt nếu làm ra như vầy : (x+1)(1/2+...+..) thì x+1=0 còn cái vế còn lại sẽ khác 0, hầu như là thế chứ tớ chưa thấy trường hợp nào mà vế x+1 khác 0 còn vế kia bằng 0 cả

23 tháng 8 2018

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}=2012\)

\(\Rightarrow\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}-2012=0\)

\(\Rightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1+...+\dfrac{x-2012}{2}-1=0\)

\(\Rightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}+...+\dfrac{x-2014}{2}=0\)

\(\Rightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)

5 tháng 4 2018

đề sai?

9 tháng 2 2018

\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)

9 tháng 2 2018

mình ko chắc đúng nha !

Số số hạng của tử là :

(2013-1):1+1=2013(số hạng)

\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)

=2014

Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012