Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)
\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)
\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)
\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)
\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)
\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)
\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)
\(=\dfrac{1}{2\sqrt{2}a}\)
\(=\dfrac{\sqrt{2}}{4a}\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
chịu đấy :v
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)
\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)
\(=\dfrac{-x+1+x^2}{x-3}\)
d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)
\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\sqrt{x^2}\)
\(=4x-2\sqrt{x}+x\)
\(=5x-2\sqrt{2}\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)
b, đề không rõ ràng
a. \(\sqrt{\dfrac{63y^3}{7y}}\)=\(\sqrt{9y^2}\)=3y
b.\(\sqrt{\dfrac{48x^3}{3x^5}}\)=\(\sqrt{16\cdot\dfrac{1}{X^2}}\)= \(\sqrt{16}\cdot\sqrt{\dfrac{1}{X^2}}\)=\(4\cdot\dfrac{1}{X}=\dfrac{4}{X}\)
c.\(\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{\sqrt{9n^2}}{\sqrt{4}}=\dfrac{3n}{2}\)
d. \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\sqrt{2}a}\)
a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3y\)
b) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{4}{x}\)
c) \(\dfrac{\sqrt{45mn^2}}{\sqrt{20m}}=\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{3n}{2}\)
d) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\left|a\right|\sqrt{2}}=\dfrac{-1}{2a\sqrt{2}}\)
Rút gọn: đkxđ: x >=0; x khác 9; x khác 4
A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{1}{1+\sqrt{x}}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{1+\sqrt{x}}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{1+\sqrt{x}}\cdot\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-2}{1+\sqrt{x}}\)
Ta thấy: \(1+\sqrt{x}\ge1>0\forall xTMĐKXĐ\)
=> A < 0 <=> \(\sqrt{x}-2< 0\)
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
kết hợp với đkxđ => 0 ≤ x < 4
Câu đầu tiên: \(\sqrt{18-\sqrt{128}}=\sqrt{16-2\sqrt[]{16}\sqrt{2}+2}=\sqrt{\left(\sqrt{16}-\sqrt{2}\right)^2}=\sqrt{16}-\sqrt{2}=4-\sqrt{2}\)
CM\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=2\)
Biến đổi vế trái ta có:
\(VT^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(\sqrt{4-\sqrt{7}}\right)}+4-\sqrt{7}=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=2\Rightarrow VT=\sqrt{2}\)
\(1.\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=2-\sqrt{3}+1+\sqrt{3}=3\) \(2a.\sqrt{x^2-2x+1}=7\)
⇔ \(x^2-2x+1=49\)
⇔ \(x^2-2x-48=0\)
⇔ \(\left(x+6\right)\left(x-8\right)=0\)
⇔ \(x=8orx=-6\)
\(b.\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
⇔ \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
⇔ \(x-5=1-x\)
⇔ \(x=3\left(KTM\right)\)
KL.............
\(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< 0\left(ĐK:x\ge0\right)\)
<=> \(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< \dfrac{0}{2\left(\sqrt{x}-3\right)}\)
<=> \(\sqrt{x}+5< 0\)
<=> \(\sqrt{x}< -5\)
<=> \(x< 25;\left(x\ge0\right)\)
<=> \(0\le x< 25\)
\(ĐK:x\ge0;x\ne9\\ BPT\Leftrightarrow2\left(\sqrt{x}-3\right)< 0\left(\sqrt{x}+5\ge5>0\right)\\ \Leftrightarrow\sqrt{x}-3< 0\left(2>0\right)\\ \Leftrightarrow x< 9\\ \Leftrightarrow0\le x< 9\)