Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a/b=c/d⇒a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau
a/c=b/d=a+b/c+d
⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)
Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)
Từ (1) và (2)
⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3
\(VT=\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}\)
\(=\left(a+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+d}\right)+\left(b+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{d+a}\right)\)
Ap dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y} \left(\forall x,y>0\right)\)
Ta có: \(VT\ge\left(a+c\right).\dfrac{4}{a+b+c+d}+\left(b+d\right).\dfrac{4}{a+b+c+d}\)
\(=\dfrac{4\left(a+b+c+d\right)}{\left(a+b+c+d\right)}=4\left(ĐPCM\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
\(A=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(A=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
a)hình như đề sai thì phải
sửa lại
\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)
=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)
=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
hay a/b=5/6