Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2+1/6+1/12+...+1/9900
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100
=99/100
\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
\(3A-A=1-\dfrac{1}{3^{2018}}\)
\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)
\(b,B=1+5+5^2+5^3+...+5^{100}\)
\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=1-5^{101}\)
\(B=\dfrac{\left(1-5^{101}\right)}{4}\)
A = \(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}+\frac{-2}{9}\)
A = \(\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{73}\)
A = \(\left(\frac{3-2}{9}\right)-\left(\frac{27+1}{36}\right)+\left(\frac{9+1}{15}\right)+\frac{1}{73}\)
A = \(\frac{1}{9}-\frac{7}{9}+\frac{6}{9}+\frac{1}{73}\)
A = \(0+\frac{1}{73}=\frac{1}{73}\)
Làm
B = 1/3 - 3/4 - (-3)/5 + 1/73 - 1/36 + 1/15 + -2/9
B = 1/3 -3/4 + 3/5 +1/73 - 1/36 + 1/15 -2/9
B = [ 1/3 + 3/5 + 1/15 ] + [ -3/4 - 1/36 -2/9] + 1/73
B = [ 5/15 + 9/15 + 1/15 ] + [ -27/36 - 8/36 - 1/36 ] + 1/73
B = 1 + (-1) + 1/73
B = 1/73
HỌC TỐT Ạ
Cảm ơn bạn Thắng Nguyễn nha sẵn tiện kết bạn với mình luôn nhé
N=\(\dfrac{2^{10}.13+2^9+130}{2^8.104}\)
N=\(\dfrac{13312+642}{26624}\)
N=\(\dfrac{3954}{26624}\)=\(\dfrac{6977}{13312}\)
\(\Rightarrow2-4x=6-3x\\ \Rightarrow x=-4\)
\(\dfrac{2x-1}{3}=\dfrac{2-x}{-2}\)
\(\Rightarrow-2\left(2x-1\right)=3\left(2-x\right)\)
\(\Rightarrow-4x+2=6-3x\Rightarrow x=-4\)