Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(A=3^{100}+3^{99}+...+3+1\)
\(\Rightarrow3A=3^{101}+3^{100}+...+3^2+3\)
\(\Rightarrow3A-A=\left(3^{101}+3^{100}+...+3^2+3\right)-\left(3^{100}+3^{99}+...+3+1\right)\)
\(\Rightarrow2A=3^{101}+1\Rightarrow A=\dfrac{3^{101}+1}{2}\)
b, \(B=\dfrac{15^9.2^{18}.9^8}{3^{15}.4^8.25^4}=\dfrac{3^9.5^9.2^{18}.3^{16}}{3^{15}.2^{16}.5^8}\)
\(=3^{10}.5.2^2=472392\)
c, \(C=\dfrac{2^{10}.10^{17}.7^9}{5^{15}.14^9.64^9}=\dfrac{2^{10}.2^{17}.5^{17}.7^9}{5^{15}.2^9.7^9.2^{54}}\)
\(=\dfrac{5^2}{2^{36}}\)
Chúc bạn học tốt!!!
1.
\(A=3^{100}+3^{99}+3^{98}+...+3^2+3+1\\ A=\dfrac{3-1}{2}\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)\\ =\dfrac{\left(3-1\right)\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)}{2}\\ =\dfrac{3^{101}-3^{100}+3^{100}-3^{99}+...+3^2-3+3-1}{2}\\ =\dfrac{3^{101}-1}{2}\)
\(B=\dfrac{15^9\cdot2^{18}\cdot9^8}{3^{15}\cdot4^8\cdot25^4}\\ =\dfrac{\left(3\cdot5\right)^9\cdot2^{18}\cdot\left(3^2\right)^8}{3^{15}\cdot\left(2^2\right)^8\cdot\left(5^2\right)^4}\\ =\dfrac{3^9\cdot5^9\cdot2^{18}\cdot3^{16}}{3^{15}\cdot2^{16}\cdot5^8}\\ =\dfrac{3^9\cdot5\cdot2^2\cdot3}{1\cdot1\cdot1}\\ =3^{10}\cdot5\cdot2^2\\ =59049\cdot5\cdot4\\ =59049\cdot\left(5\cdot4\right)\\ =59049\cdot20\\ =1180980\)
\(C=\dfrac{2^{10}\cdot10^{17}\cdot7^9}{5^{15}\cdot14^9\cdot64^9}\\ =\dfrac{2^{10}\cdot\left(2\cdot5\right)^{17}\cdot7^9}{5^{15}\cdot\left(2\cdot7\right)^9\cdot\left(2^6\right)^9}\\ =\dfrac{2^{10}\cdot2^{17}\cdot5^{17}\cdot7^9}{5^{15}\cdot2^9\cdot7^9\cdot2^{54}}\\ =\dfrac{2\cdot1\cdot5^2\cdot1}{1\cdot1\cdot1\cdot2^{37}}\\ =\dfrac{5^2}{2^{36}}\\ =\dfrac{25}{2^{36}}\)
Tìm x, biết:
\(\dfrac{x-9}{11}+\dfrac{x-10}{12}+\dfrac{x-11}{13}=\dfrac{x-12}{14}+\dfrac{x-28}{15}\)
\(\Leftrightarrow\left(\dfrac{x-9}{11}+1\right)+\left(\dfrac{x-10}{12}+1\right)+\left(\dfrac{x-11}{13}+1\right)=\left(\dfrac{x-12}{14}+1\right)+\left(\dfrac{x-28}{15}+2\right)\)
=>x+2=0
=>x=-2
a: 2/7=18/63
4/9=28/63
=>2/7<4/9
b: -17/25=-476/700
-14/28=-350/700
=>-17/25<-14/28
\(\dfrac{9^2.15^5}{3^8.25^2}=\dfrac{3^4.3^5.5^5}{3^8.5^4}=\dfrac{3^9.5^5}{3^8.5^4}=3.5=15\)
1: \(=\dfrac{3}{4}+\dfrac{5}{4}\cdot\dfrac{8}{3}-\dfrac{1}{4}\cdot\dfrac{5}{6}=\dfrac{3}{4}+\dfrac{10}{3}-\dfrac{5}{24}\)
\(=\dfrac{18}{24}+\dfrac{80}{24}-\dfrac{5}{24}=\dfrac{93}{24}=\dfrac{31}{8}\)
2: \(=\left(7+\dfrac{23}{27}-\dfrac{23}{27}\right)+\left(\dfrac{11}{25}+\dfrac{14}{25}\right)+3.25\)
\(=7+1+3.25=8+3.25=11.25\)
3: \(=\left(\dfrac{1}{9}\cdot9\right)^{2005}-4^2=1-16=-15\)
4: \(=2\cdot\dfrac{9}{4}-\dfrac{7}{2}=\dfrac{9}{2}-\dfrac{7}{2}=1\)
5: \(=\dfrac{15}{2}\cdot\dfrac{-3}{5}+\dfrac{5}{2}\cdot\dfrac{-3}{5}=\dfrac{-3}{5}\cdot\left(\dfrac{15}{2}+\dfrac{5}{2}\right)=\dfrac{-3}{5}\cdot10=-6\)
6: \(=\left(\dfrac{6}{10}+\dfrac{5}{10}\right)^2=\left(\dfrac{11}{10}\right)^2=\dfrac{121}{100}\)
7: \(=\dfrac{1}{2}\cdot\dfrac{-7}{2}=\dfrac{-7}{4}\)
Bài 1:
\(\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
\(=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
\(=\dfrac{2^7+12^3}{2^7\cdot5^2+512}\)
\(=\dfrac{1856}{3712}\)
\(=0,5\)
Bài 2:
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Rightarrow5x+1=\dfrac{6}{7}\)
\(\Rightarrow5x=\dfrac{-1}{7}\)
\(\Rightarrow x=\dfrac{-1}{35}\)
Chỗ phức tạp là ở biểu thức trong ngoặc thôi
Ta có
\(\dfrac{1}{8}+\dfrac{1}{8\cdot15}+\dfrac{1}{15\cdot22}...+\dfrac{1}{43\cdot50}\)
\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{22}+....+\dfrac{1}{43}-\dfrac{1}{50}\right)\right]\)
\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{50}\right)\right]=\dfrac{1}{8}\cdot\dfrac{3}{200}=\dfrac{3}{1600}\)
Ta có:
\(\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3\div\left(\dfrac{3}{16}\right)^3}{2^7.5^7+512}\)
=\(\dfrac{\left(\dfrac{2}{5}.5\right)^7+\left(\dfrac{9.16}{4.3}\right)^3}{2^7.5^7+2^9}\)=\(\dfrac{2^7+12^3}{2^7.5^7+2^9}\)=\(\dfrac{2^7+2^6.3^3}{2^7.5^7+2^9}\)
=\(\dfrac{2^6.\left(2+3^3\right)}{2^6.\left(2.5^7+2^3\right)}\)=\(\dfrac{29}{156258}\).
Hì hì sai ko bít nha
\(A=\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\\ A=\dfrac{128+1728}{153+512}\\ A=\dfrac{1856}{665}=2\dfrac{526}{665}\)
Chúc bạn học tốt!!!
\(\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7+5^2+512}\)
\(\dfrac{28^7.5^8.15^9}{14^8.25^9.6^{12}}=\dfrac{2^7.14^7.5^8.5^9.3^9}{14^7.14.\left(5^2\right)^9.3^{12}.2^{12}}\\ =\dfrac{14^7.5^{17}.3^9.2^7}{14^7.14.5^{17}.5.3^9.3^3.2^7.2^5}\\ =\dfrac{1}{14.5.3^3.2^5}=\dfrac{1}{14.5.27.32}\\ =\dfrac{1}{60480}\)
\(\dfrac{28^7.5^8.15^9}{14^8.25^9.6^{12}}\\ =\dfrac{2^7.14^7.5^8.5^9.3^9}{14^8.5^9.5^9.3^{12}.2^{12}}\\ =\dfrac{1}{14.5.3^3.2^5}\\ =\dfrac{1}{60480}\)