Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công suất tiêu thụ được tính theo công thức
$P = {I^2}r = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}$
Khi mắc các nguồn điện xoay chiều lần lượt vào cuộn dây thì công suất tương ứng là
$\left\{ \begin{array}{l}{P_1} = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}(1)\\{P_2} = \frac{{{{\left( {3U} \right)}^2}r}}{{{r^2} + {{\left( {1,5{Z_L}} \right)}^2}}}(2)\\{P_3} = \frac{{{{\left( {6U} \right)}^2}r}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}(3)\end{array} \right.$
Từ (1) và (2) ta có:
$\frac{{600}}{{120}} = \frac{{{P_2}}}{{{P_1}}} = \frac{{({r^2} + Z_L^2)}}{{{r^2} + 2,25Z_L^2}}$
Suy ra cảm kháng
ZL = $\frac{{4r}}{3}$
Từ (2) và (3) ta có
$\begin{array}{l}\frac{{{P_3}}}{{{P_1}}} = \frac{{36({r^2} + Z_L^2)}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}\\ \Rightarrow {P_3} = 120 \times \frac{{36\left( {{r^2} + {{\left( {\frac{{4r}}{3}} \right)}^2}} \right)}}{{{r^2} + {{\left( {2,25.\frac{{4r}}{3}} \right)}^2}}} = 1200(W) \end{array}$
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
Hướng dẫn:
\(U_{AB}=U_C=2\) (1)
\(U_{BC}^2=U_r^2+U_L^2=3\) (2)
\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)
Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)
Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)
Theo giả thiết ta thấy: \(U_d^2=U^2+U_C^2\left(=2U_C^2\right)\)
nên u vuông pha với uC --- > u cùng pha với i và ud lệch pha 1 góc < 90o so với i (bạn có thể vẽ giản đồ véc tơ để kiểm tra lại)
--->Trong mạch đang xảy ra cộng hưởng và cuộn dây có điện trở thuần
---->Đáp án C
Đáp án C
Ta có bảng sau:
Có P 1 P 2 = 1 , 5 2 + r 2 9 ( 1 + r 2 ) = 0 , 2 ⇔ r = 0 , 75
Có P P 1 = 36 r 2 , 25 2 + r 2 . 1 + r 2 r = 10 ⇒ P = 10 P 1 = 1200 ( W )