Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
hình như đề sai hay sao ấy
tách mãi mà vẫn cứ phụ thuộc
đặt \(\sin\left(a\right)^2=x;\cos\left(a\right)^2=y;x+y=1\)
Ta có:
\(N=\sqrt{x^2+4y+\sqrt{y^2+4x}}=\sqrt{x^2+4\left(1-x\right)+\sqrt{y^2-4\left(1-y\right)}}\)
\(=\sqrt{x^2-4x+4+\sqrt{y^2-4y+4}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(y-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(1-x-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(x+1\right)^2}}\)\(=\sqrt{x^2-4x+4+x+1}=\sqrt{x^2-3x+5}\)
\(Sin^6a+cos^6a+3\left(sin^2a+cos^2a\right)\)
\(=\left(sin^2a+cos^2a\right)^3\)
\(=1\)
\(\)
\(A=\sin^6x+\cos^6x+3.1.\sin^2x.\cos^2x=\)\(\sin^6x+\cos^6x+3.\left(sin^2x+\cos^2x\right).\sin^2x.\cos^2x=\left(\sin^2x+\cos^2x\right)^3=1^3=1\)
C A H B
Gỉa sử \(\Delta ABC\)cân tại C, kẻ \(CH⊥AB\)
Ta có VT= \(\cos^2A=\frac{AH^2}{AC^2};\cos^2B=\frac{BH^2}{BC^2}\Rightarrow\cos^2A+\cos^2B=\frac{AH^2}{AC^2}+\frac{BH^2}{BC^2}=2.\frac{AH^2}{AC^2}\)do \(\hept{\begin{cases}AH=BH\\AC=BC\end{cases}}\)
\(\sin^2A=\frac{CH^2}{CA^2};\sin^2B=\frac{CH^2}{CB^2}\Rightarrow\sin^2A+\sin^2B=2.\frac{CH^2}{CA^2}\)
\(\Rightarrow\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{2.\frac{AH^2}{AC^2}}{2.\frac{CH^2}{AC^2}}=\frac{AH^2}{CH^2}\)
Ta có VP =\(\frac{1}{2}\left(\cot^2A+\cot^2B\right)=\frac{1}{2}.\left(\frac{AH^2}{CH^2}+\frac{BH^2}{CH^2}\right)=\frac{1}{2}\left(2.\frac{AH^2}{CH^2}\right)=\frac{AH^2}{CH^2}\)
Ta thấy VT=VP\(\Rightarrow\)giả sử đúng
Vậy ........
ABCHcabDEH**Cái tia phân giác là của câu a, không cần để ý nó**
Hình
thanks