\(CMR\)

a) \(\left(n+2\right)^2-\left(n-2\right)^3⋮8\) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

26 tháng 7 2018

\(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=8n+8\)

\(=8\left(n+1\right)⋮8\left(đpcm\right)\)

\(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=0\cdot2n\)

\(=0⋮24\)

26 tháng 7 2018

 a.                                                  Giải :

             Ta có:

                                   (n+3)2 - (n-1)2 = [(n+3)(n+3)-(n-1)(n-1)]

                                        =[(n2+9)-(n2-1)]=n2-n2+9-1

                                       =9-1=8(đpcm)

5 tháng 8 2017

a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)

\(=\left(n+2\right).\left(4n^2+4n\right)\)

\(=4n.\left(n+2\right).\left(n+1\right)\)

\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)

\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp

\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\)\(3\)

\(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)

Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)

b,

+ Thực hiện phép tính :

6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1

Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)

Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)

\(\Rightarrow3n+2\inƯ\left(1\right)\)

\(\Rightarrow3n+2\in\left\{\pm1\right\}\)

Ta có bảng sau :

3n+2 1 -1
n \(-\dfrac{1}{3}\) -1

Vậy n = -1

26 tháng 9 2019

phân tích đa thức thành nhân tử

26 tháng 9 2019

 Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào

29 tháng 3 2018

Bạn ơi đề thiếu cái gì đó rùi nha !

Vì nếu ta thay n lẻ thì :

n^2 cũng lẻ => n^2-2 lẻ => (n^2-2)^2 lẻ

=> [n.(n^2-2)^2] lẻ nên ko thể chia hết cho 10 là số chẵn