Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tích: \(\left(2^{n+2}-1\right)\left(2^n+1\right)=\left(4.2^n-1\right)\left(2^n+1\right)=\left[3.2^n+\left(2^n-1\right)\right]\left(2^n+1\right)\)
\(=3.2^n\left(2^n+1\right)+\left(2^n-1\right)\left(2^n+1\right)=3.2^n\left(2^n+1\right)+\left(4^n-1\right)\)
Ta có \(\left(4^n-1\right)=\left(1+3\right)^n-1=B\left(3\right)+1-1=B\left(3\right)\) (với \(B\left(3\right)\) là bội của 3)
\(\Rightarrow4^n-1⋮3\)
\(\Rightarrow3.2^n\left(2^n+1\right)+\left(4^n-1\right)⋮3\)
\(\Rightarrow\left(2^{n+2}-1\right)\left(2^n+1\right)⋮3\), do đó ít nhất một trong hai số \(2^{n+2}-1\) hoặc \(2^n+1\) phải chia hết cho 3 (1)
Mặt khác xét hiệu \(2^{n+2}-1-\left(2^n+1\right)=3.2^n-2\) không chia hết cho 3 nên hai số trên không cùng số dư khi chi cho 3 (2)
Từ (1),(2) suy ra trong hai số \(2^{n+2}-1\) và \(2^n+1\) có một và chỉ một số phải chia hết cho 3
mình nghĩ chắc chẳng có số nào toàn chữ số 2 chia hết cho 54 đâu
giúp mik đi