Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐÂY :
Ta có:a1/a2=a2/a3=....=a2017/a2018
suy ra a1/a2xa2/a3x...xa2017/a2018=(a1/a2)^2017(2017 số bằng nhau nhân với nhau) (1)
mặt khác a1/a2xa2/a3x.....xa2017/a2018==(a1xa2x...a2017)/(a2xa3x...xa2018)=a1/a2018(giản ước)=-5^2017 (2)
Từ(1)và(2) suy ra (a1/a2)^2017=-5^2017 suy ra a1/a2=-5
Theo tính chất dãy tỉ số bằng nhau:
-5=a1/a2=a2/a3=...=a2017/a2018=a1+a2+a3+...+a2017/a2+a3+a4+..+a2018
suy ra a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Vậy :a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Hôm nào có bài nào khó thì gửi mình giải cho
-5 nha bn trong violympic vòng 12 lớp 7 phải ko chắc chắn đúng lun 100000000000000000000000000000000000000000000000000% vì bài này mik làm rùi.
cho mik nha
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\)
\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\left(đpcm\right)\)
violympic lớp 7 phải không , bạn ghi sai đề rồi !
Câu trả lời này mình giải theo đề đúng !!
Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2017}}{a_{2018}}=k\)
Ta có :
a1 = a2.k
a1 = (a3.k).k = a3.k2
a1 = ( a4.k.k).k = a4.k3
.......
a1 = a2018.k2017
=> \(\frac{a_1}{a_{2018}}=k^{2017}\)
Mà \(\frac{a_1}{a_{2018}}=\left(-5\right)^{2017}\)
=> k2017 = (- 5 )2017 => k = - 5
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}=-5\)
Câu 1:
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Câu 2:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)
\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)
..............
\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)
Nhân các vế (1),(2)....(2017) ta được:
\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)
Vậy...
Câu 3:
\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)
\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)
\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)
\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)
Đến đây thfi làm giống câu 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\)
\(\Rightarrow\)\(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\)
\(\Rightarrow\)\(\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\right)^n\) \(\left(1\right)\)
Lại có :
\(\left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}.....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_n}{a_{n+1}}=\frac{a_1.a_2.a_3.....a_n}{a_2.a_3.a_4.....a_{n+1}}=\frac{a_1}{a_{n+1}}\) \(\left(2\right)\)
Từ (1) và (2) suy ra đpcm : \(\left(\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)
Chúc bạn học tốt ~
( Đề bài có bị thiếu không vậy? Theo mình thì đề bài bị thiếu 1 chỗ rồi )
Bài làm
Ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2017}{a2018}=\frac{a1+a2+a3+...+a2017}{a2+a3+a4+...+2018}\)
Đặt \(\frac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}=x\)
\(\Rightarrow\frac{a1}{a2}=x\left(1\right);\frac{a2}{a3}=x\left(2\right);\frac{a3}{a4}=x\left(3\right);...;\frac{a2017}{a2018}=x\left(2017\right)\)
Nhân (1), (2), (3),..., (2017) vế theo vế ta có:
\(\frac{a1}{a2}.\frac{a2}{a3}.\frac{a3}{a4}...\frac{a2017}{a2018}=x^{2017}\)
Hay \(\frac{a1}{a2018}=\left(\frac{a1}{a2}+\frac{a2}{a3}+\frac{a3}{a4}+...+\frac{a2017}{a2018}\right)^{2017}\)\(\left(đpcm\right)\)
( sai thì thôi nha )
fmkvkmbkdfjm