\(c.\left(n-2\right)^2-\left(n+3\right)\left(n-3\right)=4\left(n-1\right)\)a.)(n-2)(x+2)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(\left(n-2\right)^2-\left(n+3\right)\left(n-3\right)=4\left(n-1\right)\)

\(\Leftrightarrow n^2-4n+4-n^2+9=4n-4\)

=>-4n+13=4n-4

=>-8n=-17

hay n=17/8

a: \(\left(n-2\right)\left(n+2\right)+6\left(n-1\right)=\left(n+1\right)^2\)

\(\Leftrightarrow n^2-4+6n-6=n^2+2n+1\)

=>6n-10=2n+1

=>4n=11

hay n=11/4

d: \(2\left(3-x\right)-3\left(x-1\right)=4\left(x-3\right)\)

=>6-2x-3x+3=4x-12

=>-5x+9=4x-12

=>-9x=-21

hay x=7/3

 

6 tháng 5 2020

lỗi j ạ

\n\n

\n
27 tháng 9 2018

a, (y-3)(y+3)=y2-32=y2-9 (hằng đẳng thức)

b, (a-b-c)2 - (a-b+c)2= ((a-b-c)-(a-b+c)).((a-b-c)+(a-b+c))

=(a-b-c-a+b-c).(a-b-c+a-b+c)=-2c+2a-2b

c, (m+n)(m2 -mn+n2)=m3+n3(hằng đẳng thức)

d

27 tháng 9 2018

mình bận hồi mình làm tiếp

a) \(\left(n-1\right)^2-n\left(n-2\right)=3\left(n-1\right)\)

\(\Rightarrow n^2-2n+1-n^2+2n=3n-3\)

\(\Rightarrow3n-3=1\)

\(\Rightarrow3n=4\)

\(\Rightarrow n=\dfrac{4}{3}\)

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)

\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)

\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)

\(9x-10=0\)

hay 9x=10

\(x=\frac{10}{9}\)

Vậy: \(x=\frac{10}{9}\)

c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)

\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)

\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)

\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)

\(6x-3-5x+10-3x-21=0\)

\(-2x-14=0\)

\(-2x=14\)

hay x=-7

Vậy: x=-7

d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)

\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

\(6x-18+7x-35-13x-4=0\)

\(-21\ne0\)

Vậy: x∈∅

e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)

\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)

\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)

\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)

\(-12x+96=0\)

\(-12x=-96\)

hay x=8

Vậy: x=8

22 tháng 12 2018

1.

c) x2 - xy - 3x + 3y

= (x2 - xy) - (3x - 3y)

= x(x - y) - 3(x - y)

= (x - 3)(x - y)

22 tháng 12 2018

3.

ĐKXĐ: \(x\ne y,y\ne z,z\ne x\)

Ta có:

\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}=\dfrac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

3 tháng 12 2017

a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,

\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)

3 tháng 12 2017

nãy bài 1 mk gửi thiếu 1 ý

\(x^2y+xy^2-x+y\)

có ai giúp mk ý này k

bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu

2 tháng 7 2019

A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề

2 tháng 7 2019

\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5

\(A=x^3+x^2+x-x^3-x^2-x+5\)

=> A=5

=> A luôn = 5 với mọi x => A không phụ thuộc vào x

\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)

\(B=2x^2+x-x^3-2x^2+x^3-x+3\)

=> B= 3

=> B luôn =3 với mọi x => B không phụ thuộc vào x

\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)

\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)

C=24

=> C=24 với mọi x => C không phụ thuộc vào x

Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều

2 tháng 7 2019

A = x(x2 + x + 1) - x2(x + 1) - x + 5

A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5

A = x3 + x2 + x - x3 - x2 - x + 5

A = (x3 - x3) + (x2 - x2) + (x - x) + 5

A = 0 + 0 + 0 + 5

A = 5

Vậy: Biểu thức không phụ thuộc giá trị của biến.

B = x(2x + 1) - x2(x + 2) + x3 - x + 3

B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3

B = 2x2 + x - x3 - 2x2 + x3 - x + 3

B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3

B = 0 + 0 + 0 + 3

B = 3

Vậy: Biểu thức không phụ thuộc giá trị của biến.

C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)

C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)

C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3

C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)

C = 24 + 0 + 0 + 0

C = 24

Vậy: Biểu thức không phụ thuộc giá trị của biến.

D viết sai thì chịu