Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
a) (x + 3) . (x - \(\frac{1}{2}\)) = 0
=> \(\hept{\begin{cases}x+3=0\\x-\frac{1}{2}=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)
ok nha!! 5756758769723414657765887805674765756568678568
ms nghĩ câu b) đợi tí :)
b)
Ta có : x^4 luôn lớn hơn hoặc bằng 0
3x^2 luôn lớn hơn hoặc bằng 0
=> x^4 + 3x^2 luôn lớn hơn hoặc bằng 0
=> x^4 + 3x^2 + 3 luôn lớn hơn hoặc bằng 3 ( đpcm )
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x-4\right)^2-1\)
Vì \(\left(x-4\right)^2\ge0\left(\forall x\right)\Rightarrow-\left(x-4\right)^2\le0\left(\forall x\right)\)
Và -1 < 0
Nên \(-x^2+4x-5< 0\left(\forall x\right)\)
b) \(x^4+3x^2+3=\left(x^4+2.x^2.\frac{3}{2}+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x^2+\frac{3}{2}\right)^2\ge0\left(\forall x\right)\)
Và \(\frac{3}{4}>0\)
Vậy...
c) \(x^2+2x+7=x^2+2x+1+6=\left(x+1\right)^2+6>6>0\) \(\left(\forall x\right)\)
Vậy ...
a, \(\left(x-3\right)\left(2x+5\right)>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\2x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\2x+5< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x>-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x< -\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -\dfrac{5}{2}\end{matrix}\right.\)
b,\(\left(1-4x\right)\left(x-2\right)< 0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-4x>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-4x< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x>2\end{matrix}\right.\)
c, \(\dfrac{-3}{x+2}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow3.\left(3x-1\right)^2\ge0\)
\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)
\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)
Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)
a) Để (x + 1)(x - 2) < 0 thì ta có 2 trường hợp
Th1 : (x + 1) < 0 ; (x - 2) > 0 => x < -1 ; x > 2 (vô lí)
Th2 : (x + 1) > 0 ; (x - 2) < 0 => x > -1 ; x < 2 => -1 < x < 2
Vậy x thuộc {0;1}
b) Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) thì sảy ra 2 trường hợp
Th1 : (x - 2) > 0 ; \(\left(x+\frac{2}{3}\right)>0\) => x > 2 ; \(x>-\frac{2}{3}\) => x > 2
Th2 : (x - 2) < 0 ; \(\left(x+\frac{2}{3}\right)< 0\) => x < 2 ; \(x< -\frac{2}{3}\) => \(x< -\frac{2}{3}\)
Vậy ...........................
`1)A=x^2+2x+2`
`A=x^2+2x+1=(x+1)^2+1>=1>0(dpcm)`
`2)B=-4x^2+4x-2`
`B=-4x^2+4x-1-1=-(2x-1)^2-1<=-1<0(dpcm)`
1. Ta có \(A=x^2+2x+2=\left(x+1\right)^2+1\)
mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\)
\(\Rightarrow A=x^2+2x+2>0\) ( đpcm )
2. Ta có \(B=-4x^2+4x-2=-\left(4x^2-4x+2\right)=-\left[\left(2x-1\right)^2+1\right]\)
mà \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+1\ge1\Rightarrow-\left[\left(2x-1\right)^2+1\right]\le-1< 0\)
\(\Rightarrow B=-4x^2+4x-2< 0\) ( đpcm )