Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{n+2}{n+3}\)
Gọi \(d=ƯCLN\left(n+2,n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản
b, \(\frac{n+1}{2n+3}\)
Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
a) Đặt ƯCLN(n+1; 2n+3) = d
=> (2n + 3) - (n + 1) chia hết cho d
=> (2n + 3) - [2.(n + 1)] chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản
b) Đặt ƯCLN(2n+3; 4n+8) = d
=> (4n + 8) - (2n + 3) chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d => d \(\in\) {1; 2}
Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1
Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản
a) \(\frac{n+1}{2n+3}\)
Đặt ƯCLN(n+1; 2n+3) = d
=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)
=> (2n + 3) - (n + 1) \(⋮d\)
=> (2n + 3) - [2.(n + 1)] \(⋮d\)
=> (2n + 3) - (2n + 2) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản
b) \(\frac{2n+3}{4n+8}\)
Đặt ƯCLN(2n+3;4n+8) = d
=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)
=> (4n + 8) - (2n + 3) \(⋮d\)
=> (4n + 8) - [2.(2n + 3)] \(⋮d\)
=> (4n + 8) - (4n + 6) \(⋮d\)
=> 2 chia hết cho d
=> d ∈ ∈ {1; 2}
Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ
=> \(d\ne2\Rightarrow d=1\)
Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
a, Gọi ƯCLN (4n+3;5n+4 ) = \(d\inℕ^∗\)
Ta có : \(4n+3⋮d\Rightarrow20n+15⋮d\left(1\right);5n+4⋮d\Rightarrow20n+16⋮d\left(2\right)\)
Lấy (2) - (1) \(20n+16-20n-15⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
b, Gọi ƯCLN( \(n^3+2n+1;n^2+2\)) = \(d\inℕ^∗\)
Ta có : \(n^3+2n+1⋮d\left(1\right);n^2+2⋮d\Rightarrow n^3+2n⋮d\left(2\right)\)
Lấy (1) - (2) \(n^3+2n+1-n^3-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm