K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 11.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

  A = 2 2 + 2 3 + 2 6 = 2 2 + 2 2 + 2 4 = 2.22 ⇒ A ⋮ 11

16 tháng 7 2016

không trả lời

14 tháng 7 2016

Suốt ngày nôn ọe . Nếu bn ko bít làm thì đừng trả lời!!! bucqua

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

14 tháng 7 2016

\(1+5+5^2+5^3+...+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)

\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)

\(=6+5^2.6+5^4.6+...+5^{100}.6\)

\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)

\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)

14 tháng 7 2016

câu b với bài 2 nữa nhé rùi mình tick cho

 

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

4 tháng 4 2020

a.Ta có :

abc deg = ab.10000 + cd.100 + eg

              = ab.9999 + cd .99 + ab +cd + eg

              = (ab.9999 + cd .99) +(ab +cd + eg)

Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11

4 tháng 4 2020

Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3

A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2

= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11 

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11