K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

a: \(VT=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{\left(a-2\right)\left(a^2+2a+4\right)-7a\left(a-2\right)}\)

\(=\dfrac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a^2-5a+4\right)}\)

\(=\dfrac{\left(a-4\right)\left(a+1\right)}{\left(a-4\right)\left(a-1\right)}=\dfrac{a+1}{a-1}=VP\)

b: \(VT=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2+1}=VP\)

2 tháng 7 2019

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}-\frac{2\left(-x-1\right)}{x+1}\right]:\frac{x-1}{x}\)

\(=\)\(\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}+\frac{2\left(x+1\right)}{x+1}\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)

\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\)\(\left(đpcm\right)\)

NV
2 tháng 6 2019

ĐKXĐ:...

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)

\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải

a)

\(\left(\frac{3}{2x-y}-\frac{2}{2x+y}-\frac{1}{2x-5y}\right).\frac{4x^2-y^2}{y^2}\)

\(=\frac{3(4x^2-y^2)}{(2x-y)y^2}-\frac{2(4x^2-y^2)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x-y)(2x+y)}{(2x-y)y^2}-\frac{2(2x-y)(2x+y)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x+y)-2(2x-y)}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{2x+5y}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{(2x+5y)(2x-5y)-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{4x^2-25y^2-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}=\frac{-25}{2x-5y}+\frac{1}{2x-5y}=\frac{-24}{2x-5y}\)

Ta có đpcm.

b) 

\(\frac{x^2-x+1}{x^2+x}.\frac{x+1}{3x-2}.\frac{9x-6}{x^2-x+1}\)

\(=\frac{(x^2-x+1)(x+1).3(3x-2)}{x(x+1)(3x-2)(x^2-x+1)}\)

\(=\frac{3}{x}\) (đpcm)

22 tháng 7 2018

Cám ơn ạ :)

24 tháng 11 2019

b) \(\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-\left(x+1\right)\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(x+1\right)\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-2\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)

\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\left(đpcm\right)\)

24 tháng 11 2019

a) \(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\left(\frac{9}{x\left(x+3\right)\left(x-3\right)}+\frac{x^2-3x}{x\left(x+3\right)\left(x-3\right)}\right)\)

\(:\left(\frac{3x-9}{3x\left(x+3\right)}-\frac{x^2}{3x\left(x+3\right)}\right)\)

\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}:\frac{-x^2+3x-9}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\frac{x^2-3x+9}{x-3}.\frac{3}{x^2+3x-9}\)

\(=\frac{x^2-3x+9}{3-x}.\frac{3}{x^2-3x+9}\)

\(=\frac{3}{3-x}\left(đpcm\right)\)

16 tháng 8 2017

ta có : \(VP=x^3+3x^2+2x=x\left(x^2+3x+2\right)=x\left(x^2+x+2x+2\right)\)

\(=x\left(x\left(x+1\right)+2\left(x+1\right)\right)=x\left(x+2\right)\left(x+1\right)=VT\)

vậy \(x\left(x+1\right)\left(x+2\right)=x^3+3x^2+2x\) (đpcm)

16 tháng 8 2017

Ta có \(VT\) :

\(x\left(x+1\right)\left(x+2\right)=x^3+2x^2+x^2+2x=x^3+3x^2+2x=VP\)

\(\Rightarrowđpcm\)