Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{1-3x}{2}-\frac{x+3}{2}=\frac{1-3x-x-3}{2}=\frac{1-4x-3}{2}=\frac{-4x-2}{2}=\frac{-2\left(2x+1\right)}{2}=-2x-1\)
b. \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}=\frac{2\left(x^2-y^2\right)+2y^2}{x}=\frac{2x^2-2y^2+2y^2}{x}=2x\)
c. \(\frac{3x+1}{x+y}-\frac{2x-3}{x+y}=\frac{3x+1-2x+3}{x+y}=\frac{x+4}{x+y}\)
d. \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}=\frac{xy}{2x-y}-\frac{1-x^2}{2x-y}=\frac{xy-1+x^2}{2x-y}\)
e. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{4x-1-7x+1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)
Áp dụng BĐT Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu = xaỷ ra khi x=y=1/2
BĐT schwarz mk chưa học đến bn có thể giúp mình cách khác đc ko
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)
áp dụng bđt holder ta có:
\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)
\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)
\(VT=\left(\frac{1}{x^3+y^3+xy\left(x+y\right)}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^3+y^3+xy\left(x+y\right)+2xy\left(x+y\right)}+2+\frac{5}{\left(x+y\right)^2}=11\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{1}{a+b}\) với a,b dương
Do x+y=1 nên ta có:
\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
Ta có:
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)
Ta sử dung bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)thì \(4xy+\frac{1}{4xy}=\frac{4xy}{1}+\frac{1}{4xy}\ge2\)
Mặt khác
\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)Nên ta suy ra:
\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\ge4+2+5=11\)
Dấu "=" xảy ra khi và chỉ khi x=y=\(\frac{1}{2}\)