Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne\pm1\)
a) Ta có :
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)
Vậy : \(P=\frac{x^2}{x-1}\)
b) Ta có : \(x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=-3\) ( Do \(x=1\) không thỏa mãn ĐKXĐ )
Thay \(x=-3\) vào P ta có :
\(P=\frac{\left(-3\right)^2}{-3-1}=\frac{9}{-4}=-\frac{9}{4}\)
Vậy : \(P=-\frac{9}{4}\) với x thỏa mãn đề
c) Phải là : \(x>1\) nhé bạn :
Ta có :
\(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{\left(x-1\right)}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)
\(=\left(x-1+\frac{1}{x-1}\right)+2\)
Ta có : \(x>1\Rightarrow x-1>0,\frac{1}{x-1}>0\)
Áp dụng BĐT AM-GM cho 2 số dương ta có :
\(x-1+\frac{1}{x-1}\ge2\)
Do đó : \(P\ge2+2=4\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x=2\) ( Do \(x>1\) )
Vậy : GTNN của P là 4 tại \(x=2\)
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)
Vậy...
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x
a) A có nghĩa\(\Leftrightarrow\hept{\begin{cases}2-x\ne0\\2+x\ne0\\x-3\ne0\end{cases}}\Rightarrow x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)
\(=\frac{x^2+4x+4-4+4x-x^2+4x^2}{4-x^2}:\frac{x-3}{2-x}\)
\(=\frac{4x^2+8x}{4-x^2}.\frac{2-x}{x-3}\)
\(=\frac{4x\left(x+2\right)}{\left(2+x\right)\left(x-3\right)}=\frac{4x}{x-3}\)
b) \(A=1\Leftrightarrow4x=x-3\Leftrightarrow x=-1\)
c) \(A>0\Leftrightarrow\frac{4x}{x-3}>0\)
TH1: \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}}\Leftrightarrow x>3\)
TH2: \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
Giúp mình với đúng mik tích cho :>>