Cho tam gi¡c ABC vuông t⁄i <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2022

Bạn tự vẽ hình nhé. Mình tóm tắt lời giải thôi nhé vì bài này có nhiều ý, làm chi tiết sẽ rất mất thời gian.

a) Tam giác ABH vuông tại H có đường cao HF nên \(BH^2=BF.BA\left(htl\right)\)

Tương tự, ta có \(CH^2=CE.CA\)

Nhân vế theo vế giữa 2 hệ thức vừa tìm được, ta có \(CE.CA.BF.BA=\left(BH.CH\right)^2\)  (1)

Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)

Thay vào (1), ta có đpcm

b) Chia 2 vế của hệ thức \(CE.CA.BF.BA=AH^4\) cho AH, ta được \(\dfrac{CE.CA.BF.BA}{AH}=AH^3\Leftrightarrow CE.BF.\dfrac{CA.BA}{AH}=AH^3\) (2)

Tam giác ABC vuông tại A có đường cao AH nên \(CA.BA=BC.AH\Leftrightarrow BC=\dfrac{CA.BA}{AH}\)

Thay vào (2), ta có đpcm

c) Chia 2 vế của hệ thức \(CF.BE.BC=AH^3\) cho BC, ta được \(CE.BF=\dfrac{AH^3}{BC}\) (3)

Dễ thấy \(\Delta ECH~\Delta FHB\left(g.g\right)\) \(\Rightarrow\dfrac{CE}{FH}=\dfrac{EH}{BF}\) \(\Rightarrow CE.BF=HE.HF\)

Thay vào (3), ta có \(HE.HF=\dfrac{AH^3}{BC}\) (4)

Dễ dàng chứng minh tứ giác AEHF là hình chữ nhật nên \(HE=AF;HF=AE\) nên thay vào (4), ta có đpcm

d) Hiển nhiên ta có hệ thức sau: \(\dfrac{BC}{BA}.\dfrac{AC}{BC}.\dfrac{AC}{AB}=1\)  (5)

Dễ thấy \(\dfrac{BF}{BA}=\dfrac{BH}{BC}\Rightarrow\dfrac{BC}{BA}=\dfrac{BH}{BF}\)

và \(\dfrac{CE}{CA}=\dfrac{CH}{BC}\Rightarrow\dfrac{AC}{BC}=\dfrac{CE}{CH}\)

Thay 2 hệ thức vừa tìm được vào (5), ta có \(\dfrac{BH}{BF}.\dfrac{CE}{CH}.\dfrac{AB}{AC}=1\Leftrightarrow\dfrac{BH.AB}{CH.AC}=\dfrac{BF}{CE}\) (6)

Tam giác ABC vuông tại A, đường cao AH nên ta có \(AB^2=BH.BC;AC^2=CH.BC\) . Chia vế theo vế giữa 2 hệ thức này, ta có \(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\) . Thay vào (6), ta có đpcm

Mình da xem roi rat hay cam on ban.

10 tháng 5 2021

TL: x2+\(\frac{m}{2}\)x+\(\frac{1}{2}\)

10 tháng 5 2021

Gọi x1,x2x1,x2 là nghiệm của x2−mx−2=0(1)x2−mx−2=0(1) 

→{x1+x2=mx1x2=−2→{x1+x2=mx1x2=−2

→⎧⎪ ⎪⎨⎪ ⎪⎩1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12→{1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12

→1x1,1x2→1x1,1x2 là nghiệm của phương trình 
x2+m2x−12=0

14 tháng 9 2021

a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)

\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\) 

\(\Delta=25-4\left(-1\right)=29>0\)

\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)

b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)

c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)

8 tháng 10 2021

a) 9x2 _  6x + 1 =0              b) x2 -4x +4=25                 c) (5 - 2x)2 -16 =0

<=>(3x-1)2 = 0                      <=> x2 - 4x - 21 = 0           <=>(5-2x)2 - 42 =0

<=>x=1/3                               <=> ( x - 7 ).(x + 3 )=0           <=>  (5-2x-4).(5-2x+4) = o

                                               <=> x=7 hoặc x= -3              <=>  (1-2x).(9-2x)=0

                                                                                                <=> 1 - 2x = 0  hoặc 9 - 2x =0

                                                                                                      <=> x = 1/2 hoặc x = 9/2