Cho tam giác ABC có AB = 4cm, AC = 4 3 , BC = 8cm.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

+) Chứng minh tam giác ABC vuông

Ta có:

+) Tính số đo B, C và độ dài đường cao AH của ABC

Áp dụng tỉ số lượng giác của góc nhọn trong ABC và có đường cao AH ta có:

Đáp án cần chọn là: D

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

24 tháng 6 2019

lớp mấy 8 hay 7

1 tháng 8 2019

A B C H E F

a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC

\(AB.BE=BH^2;AC.CF=CH^2\)

\(AB^2=BH.BC;AC^2=CH.BC\)

=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)

<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)

<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)

<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng

Vậy ta có điều phải chứng minh là đúng

b) 

Ta có: \(AH^2=BH.CH\)

=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)

=> \(AH^3=BC.BE.CF\)

c)   

Xét tam giác vuông BEH và tam giác vuông HFC

có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC

=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)

=> \(AH^3=BC.HE.HF\)

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2

25 tháng 6 2019

Sorry mik chỉ làm được câu a thôi mong bn thôn g cảm 

tu giác AEHF là hình chữ nhật
CF=AC-AF
BE=AB-AE
binh phuong công lai
AC^2+AB^2-2AE.AB-2AC.AF+AE^2+Af^2
AC^2+AB^2=BC^2
ae^2+af^2=ef^2=ah^2
AE.AB=AH^2
AF.AC=AH^2
thay vào VP=3AH^2+BC^2-2AH^2-2AH^2+AH^2=BC^2=VT

Vẽ hình

A F H

1 tháng 8 2019

Câu hỏi của Lưu Như Ý - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo!