Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phép quay tâm O góc \(120^0\) biến F, A, B lần lượt thành B, C, D; Biến trung điểm I của AB thành trung điểm J của CD. Nên biến tam giác AIF thành tam giác CJB
b) Phép quay tâm E góc \(60^0\) biến A, O, F lần lượt thành C, D, O
a) Từ hệ thức suy ra d' = φ(d) = .
b) +) φ(d) = = +∞ .
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
+) φ(d) = = -∞.
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) φ(d) = = = f.
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).
Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)
\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)
\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)
Gọi I, J, K lần lượt là các giao điểm của AH và MO; AC và BH; MC và BO
\(MA\perp\left(ABC\right)\Rightarrow MA\perp BJ\)
H là trực tâm của tam giác ABC => \(AC\perp BJ\)
\(\left\{{}\begin{matrix}BJ\perp MA\\BJ\perp AC\end{matrix}\right.\)\(\Rightarrow BJ\perp\left(MAC\right)\)
\(\Rightarrow BJ\perp MC\)
O là trực tâm của tam giác MBC nên \(BO\perp MC\)
Do đó : \(BO\perp\left(BJK\right)\Rightarrow MC\perp\left(BOH\right)\Rightarrow MC\perp OH\) (1)
Chứng minh tương tự : \(MB\perp OH\) (2)
Từ (1) và (2) cho \(OH\perp\left(MBC\right)\)
a)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra:
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm.
a) (hình bên)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b) ( hình 1.26)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm