Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TenAnh1
TenAnh1
A = (-0.14, -7.4)
A = (-0.14, -7.4)
A = (-0.14, -7.4)
B = (14.46, -7.36)
B = (14.46, -7.36)
B = (14.46, -7.36)
C = (-3.74, -5.6)
C = (-3.74, -5.6)
C = (-3.74, -5.6)
D = (11.62, -5.6)
D = (11.62, -5.6)
D = (11.62, -5.6)
E = (-3.34, -5.86)
E = (-3.34, -5.86)
E = (-3.34, -5.86)
F = (12.02, -5.86)
F = (12.02, -5.86)
F = (12.02, -5.86)
G = (-3.7, -5.88)
G = (-3.7, -5.88)
G = (-3.7, -5.88)
H = (11.66, -5.88)
H = (11.66, -5.88)
H = (11.66, -5.88)
a) Các véctơ cùng phương với là: , , , , , , .
b) Các véctơ cùng hướng với là: , , .
c) Các véctơ ngược hướng với là: , , , .
Gọi \(AC \cap BD = \left\{ O \right\}\) mà A’.ABCD là hình chóp đều nên \(A'O \bot \left( {ABCD} \right)\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Xét tam giác A’AO vuông tại O có
\(A'O = \sqrt {A{{A'}^2} - A{O^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 2 }}{2}\)
\({S_{ABCD}} = {a^2}\)
Vậy khối lăng trụ có thể tích \(V = \frac{1}{3}A'O.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\)
Nếu hình lăng trụ \(ABCD.A'B'C'D'\) xoay lại thành hình lăng trụ AA’D’D.BB’C’C thì thể tích không thay đổi do đó thể tích hình chóp \(A'.BB'C'C\) bằng một phần 3 thể tích hình lăng trụ AA’D’D.BB’C’C vì chung đáy và chung chiều cao kẻ từ A’ xuống đáy BB’C’C.
Thể tích khối chóp là \({V_{A'.BB'C'C}} = \frac{1}{3}.\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{{18}}\)
Đáp án B
Hình lăng trụ tứ giác đều có tất cả các cạnh bằng nhau là hình lập phương.
Gọi a là độ dài một cạch thì tổng diện tích các mặt S = 6 a 2 => a = 4.
=> thể tích lăng trụ là V = a 3 = 4 3 = 64