Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường chéo AC,BD cắt nhau tại H .Trong tam giác vuông ABD ,ta có :
\(\frac{HD}{HB}=\frac{AD^2}{AB^2}=\frac{4^2}{6^2}=\frac{4}{6}\)
Dễ thấy \(\Delta HDC~\Delta HBA\)nên
\(\frac{DC}{AB}=\frac{HD}{HB}\)\(=\frac{4}{9}\)\(\Rightarrow\)\(DC\)=\(\frac{4}{9}.6=\frac{8}{3}\)(Cm)
Kẻ đường cao CK của tam giác ABC , dễ thấy KB = AB - DC = 6 -\(\frac{8}{3}\)=\(\frac{10}{3}\)
\(\Rightarrow\)\(BC=\frac{\sqrt{224}}{3}=\frac{2\sqrt{61}}{3}\left(cm\right)\)
Giả sử ABCD là hình thang cân thỏa điều kiện đề bài.
Hạ đường cao AH, BK xuống BC
Ta tính được DH = \(\frac{CD-AB}{2}=18\left(cm\right)\)
\(\Rightarrow HC=CD-DH=32\left(cm\right)\)
\(\Rightarrow AH=\sqrt{DH.HC}=24\left(cm\right)\)
Từ đó tính được diện tích hình thang ABCD là : \(768cm^2\)
vẽ đườg cao AH&BK.táco:
Tamgiác AHD=támgiacBKC(ccạnh huynề-góc nhọn)
-->DH=KC mà:DC=DH+HK+KC ---->DC=2DH+HK----->DH=(DC-HK):2
mà HK=AB(ABKH là hcn)
dođo:DH=(DC-AB):2=(50-14):2=18
--->HC=32
tamgiác AHD có H^=90dộ theo HTL có:AH^2= DHxHC=18x32=576
--->AH=24
Rùi đó bạn tự tính S hình thang nha!
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
A B C D O
Hình mình vẽ nhìn AB nhỏ hơn CD nhưng kéo hình cho đúng không được. Cơ bản là cách giải như nhau, bạn tham khảo
Gọi O là giao điểm hai đường chéo hình thang
Hai tam giác ADC và BCD có DC chung, AD = BC, góc D = góc C
\(\Delta ADC=\Delta BCD\left(c.g.c\right)\Rightarrow\widehat{DAC}=\widehat{CBD}\)
Mặt khác xét hai tam giác vuông AOD và BOC có cạnh huyền AD = cạnh huyền BC,\(\widehat{DAC}=\widehat{CBD}\) ,
do đó \(\Delta AOD=\Delta BOC\)
\(\Rightarrow\left\{{}\begin{matrix}OD=OC\\OA=OB\end{matrix}\right.\)
Xét tam giác vuông DOC ta có:
\(OD^2+OC^2=DC^2\\ \Leftrightarrow2OD^2=DC^2\\ \Leftrightarrow\sqrt{2}OD=DC\\ \Rightarrow\sqrt{2}OD=15,34\Rightarrow OD=\dfrac{15,34}{\sqrt{2}}\)
Xét tam giác vuông OAD ta có:
\(OA^2=AD^2-OD^2=\left(20,35\right)^2-\left(\dfrac{15,34}{\sqrt{2}}\right)^2\\ =\left(20,35\right)^2-\dfrac{\left(15,34\right)^2}{2}\)
Xét tam giác vuông OAB ta có:
\(AB^2=OA^2+OB^2=2OA^2\\ AB^2=2\left(\left(20,35\right)^2-\dfrac{\left(15,34\right)^2}{2}\right)=2.20,35^2-15,34^2=592,93\\ \Rightarrow AB=24,35cm\)
Đs...