K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )

a: BD=17cm

b: \(AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)

18 tháng 11 2023

a: ABCD là hình chữ nhật

=>\(BD^2=BA^2+BC^2\)

=>\(BD^2=5^2+12^2=169\)

=>BD=13(cm)

b: Xét ΔADB vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: \(\widehat{HDK}+\widehat{HBC}=90^0\)(ΔBDC vuông tại C)

\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{HBC}=\widehat{HBI}\left(I\in BC\right)\)

nên \(\widehat{HDK}=\widehat{HIB}\)

Xét ΔHDK vuông tại H và ΔHIB vuông tại H có

\(\widehat{HDK}=\widehat{HIB}\)

Do đó: ΔHDK đồng dạng với ΔHIB

=>\(\dfrac{HD}{HI}=\dfrac{HK}{HB}\)

=>\(HD\cdot HB=HK\cdot HI\)(1)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AH^2=HK\cdot HI\)

4 tháng 11 2018

A B C D H I K

a) Xét \(\Delta ABD\) vuông có:

AB2 + AD2 = BD2 ( định lí Pytago)

Mà AD = BC do tứ giác ABCD là hình chữ nhật

\(\Rightarrow\) 82 + 152 = BD2

\(\Rightarrow\) BD = 17

b) Áp dụng hệ thức giữa cạnh và đường cao trong \(\Delta ABD\) vuông:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AD^2}\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{8^2}+\dfrac{1}{15^2}\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{289}{14400}\)

\(\Rightarrow AH=\sqrt{\dfrac{14400}{289}}=\dfrac{120}{17}\approx7,059\)

c) Xét \(\Delta\)ABD có: AH2 = BH.HD

Xét \(\Delta\)BHI và \(\Delta\)AHB có:

\(\widehat{ABI}=\widehat{AHB}=90^o\)

Chung \(\widehat{BAH}\)

\(\Rightarrow\)\(\Delta\) BHI \(\sim\)\(\Delta\)AHB (g.g) (1)

Ta có: CD // AB

=> KD // AB

=> \(\widehat{KDH}=\widehat{HBA}\)

Xét \(\Delta\)AHB và \(\Delta\)KHD có:

\(\widehat{KDH}=\widehat{HBA}\)

\(\widehat{KHD}=\widehat{BHA}=90^o\)

=> \(\Delta\)AHB \(\sim\) \(\Delta\)KHD (g.g) (2)

Từ (1) và (2)

=> \(\Delta\)BHI \(\sim\)\(\Delta\)KHD

=> \(\dfrac{BH}{KH}=\dfrac{IH}{HD}\)

=> BH.HD = IH.KH

=> AH2 = IH.KH

4 tháng 11 2018

bn tự vẽ hình:

a) vì ABCD là hình chữ nhật nên:

AB = DC = 8 đvđd ( đơn vị độ dài )

BC = AD = 15 đvđd

Áp dụng định lý Pi - ta - go trong △ABD vuông tại A có

\(BD^2=AB^2+AD^2\)

=> BD \(=\sqrt{8^2+15^2}=17đvđd\) Vậy BD = 17 đvđd

b)

Áp dụng hệ thức giữ cạnh và đường cao trong △ABD vuông tại A có

AB . AD = AH . BD

=> AH \(=\dfrac{8.15}{17}\) = \(\dfrac{120}{7}\) đvđd Vậy AH = \(\dfrac{120}{7}\) đvđd

20 tháng 9 2020

A B C D 5 12 H K N

a) Ta có: Áp dụng định lý Pytago:

\(AC^2=AB^2+BC^2=5^2+12^2=169\)

\(\Rightarrow AC=13\left(cm\right)\)

Áp dụng định lý thứ 4 ta có:

\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}=\frac{1}{5^2}+\frac{1}{12^2}\)

\(\Leftrightarrow BH^2=\frac{3600}{169}\Rightarrow BH=\frac{60}{13}\left(cm\right)\)

Ta có: ΔAHN ~ ΔKDN (g.g)

=> \(\frac{AN}{NH}=\frac{KN}{ND}\Leftrightarrow HN\cdot NK=AN\cdot ND\) (1)

Lại có: ΔAHN ~ ΔADC (g.g)

=> \(\frac{AN}{AH}=\frac{AC}{AD}\Leftrightarrow\frac{AN}{AH}=\frac{HC}{ND}\Rightarrow AN\cdot ND=AH\cdot HC\) (2)

Từ (1) và (2) => \(AH\cdot HC=HN\cdot NK\Leftrightarrow BH^2=HN.NK\)

=> đpcm