Cho hình chóp S.ABCcó mặt đáy là tam giác đều cạnh bằng 2 và hình chiếu của  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Đáp án B

Gọi r 1 , r 2 , r 3  lần lượt là bán kính đường tròn ngoại tiếp  Δ H A B , Δ H B C , Δ H C A

Theo định lí Sin, ta có A B sin A H B ⏜ = 2 r 1 ⇒ r 1 = 2 2. sin 150 ° = 2 ;  tương tự  r 2 = 2 3 3 r 3 = 1

Gọi R 1 , R 2 , R 3  lần lượt là bán kính mặt cầu ngoại tiếp các hình chóp  S . H A B , S . H B C , S . H C A

Đặt S H = 2 x ⇒ R 1 = r 1 2 + S H 2 4 = x 2 + 4 ; R 2 = x 2 + 3 4 và  R 3 = x 2 + 1

Suy ra  ∑ S = S 1 + S 2 + S 3 = 4 π R 1 2 + 4 π R 2 2 + 4 π R 3 2 = 4 π 3 x 2 + 19 3 = 124 π 3 ⇒ x = 2 3 3

Vậy thể tích khối chóp S.ABC là  V = 1 3 . S H . S Δ A B C = 1 3 . 4 3 3 . 2 2 3 4 = 4 3

Chú ý: “Cho hình chóp S . A B C có SA vuông góc với đáy và R Δ A B C  là bán kính đường tròn ngoại tiếp tam giác A B C → R = R Δ A B C 2 + S A 2 4  là bán kính mặt cầu ngoại tiếp khối chóp S.ABC”

30 tháng 5 2017

Chọn đáp án B

9 tháng 8 2019

19 tháng 10 2018

Gọi O là trung điểm của AB

Ta có 

Trong tam giác vuông SOC có 

Ta có  

Vậy 

Chọn C.

22 tháng 7 2017

Trong mặt phẳng (ABC), qua A kẻ đường thẳng d song song với BC. Kẻ H I ⊥ d  , dễ thấy A I ⊥ S H I . Trong tam giác vuông SHI kẻ H K ⊥ S I  , nhận thấy H K ⊥ S I A .

Ta có d S A , B C = d B , S I A = 3 2 d H , S I A = 3 2 H K  

Ta tính được H = H A . sin 60 o = a 3 3  

Ta có S C H ^ = S C ; A B C ^ , suy ra S H = a 21 3  

Từ 1 H K 2 = 1 S H 2 + 1 H I 2  ta thu được H K = a 42 12  

Suy ra d S A , B C = 3 2 H K = a 42 8

Đáp án C

8 tháng 5 2019

Chọn C

21 tháng 1 2018

11 tháng 1 2018

Đáp án A

25 tháng 7 2019

15 tháng 11 2018

Đáp án D

Phương pháp giải:

Xác định tâm mặt cầu ngoại tiếp đi qua các đỉnh của khối chóp bằng phương pháp dựng hình, từ đó dựa vào tính toán xác định bán kính – thể tích mặt cầu.

Lời giải: