Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D S E K H
Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)
Do đó \(SH\perp HD\) ta có :
\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)
Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)
Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :
\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)
=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)
Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)
Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)
Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)
Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
QUẢNG CÁO
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
QUẢNG CÁO
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.
ღᏠᎮღĐiền❤RaiBo༻꧂
Phải giải chi tiết ra chứ, bài dễ mak, lớp 6 cx lm đc
S A B C D M N H K
Thế tích của khối chóp S.CDNM :
\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)
\(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)
\(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)
Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)
Khoảng cách giữa 2 đường thẳng DM và SC
\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\)
Kết hợp với điều kiện :
\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)
Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC
Do đó :
\(d\left(DM,SC\right)=HK\)
Ta có :
\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)
\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)
cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC
cảm ơn c nhiều nhiều.
?o?n th?ng a: ?o?n th?ng [A, D] ?o?n th?ng b: ?o?n th?ng [A, B] ?o?n th?ng e: ?o?n th?ng [B, C] ?o?n th?ng f: ?o?n th?ng [C, D] ?o?n th?ng g: ?o?n th?ng [A, C] ?o?n th?ng i: ?o?n th?ng [S, H] ?o?n th?ng j: ?o?n th?ng [S, A] ?o?n th?ng k: ?o?n th?ng [S, B] ?o?n th?ng l: ?o?n th?ng [S, C] ?o?n th?ng m: ?o?n th?ng [S, D] ?o?n th?ng n: ?o?n th?ng [M, C] ?o?n th?ng p: ?o?n th?ng [M, B] ?o?n th?ng p: ?o?n th?ng [M, B] A = (-1.48, 1.8) A = (-1.48, 1.8) A = (-1.48, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) B = (-3.12, -0.08) B = (-3.12, -0.08) B = (-3.12, -0.08) ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m H: (3A + C) / 4 ?i?m H: (3A + C) / 4 ?i?m H: (3A + C) / 4 ?i?m S: ?i?m tr�n h ?i?m S: ?i?m tr�n h ?i?m S: ?i?m tr�n h ?i?m M: (S + A) / 2 ?i?m M: (S + A) / 2 ?i?m M: (S + A) / 2
Do CM là trung tuyến của SAC nên M là trung điểm SA.
\(\dfrac{V_{SMBC}}{V_{SABC}}=\dfrac{SM}{SA}=\dfrac{1}{2}\)
Ta có \(AC=\sqrt{AB^2+AC^2}=a\sqrt{2}\) nên \(AH=\dfrac{1}{4}AC=\dfrac{a\sqrt{2}}{4}\)
Suy ra \(SH=\sqrt{SA^2-AH^2}=\sqrt{a^2-\dfrac{2a^2}{16}}=\dfrac{a\sqrt{14}}{4}\)
Do đó \(V_{SABC}=\dfrac{1}{3}SH.S_{ABC}=\dfrac{1}{3}.\dfrac{a\sqrt{14}}{4}.\dfrac{a^2}{2}=\dfrac{a^3\sqrt{14}}{24}\)
Vậy \(V_{SMBC}=\dfrac{1}{2}V_{SABC}=\dfrac{a^3\sqrt{14}}{48}\)
Đáp án C
Ta có: Xét ∆ A D H vuông tại A có:
Xét ∆ S D H vuông tại H có:
S H K D C = 5 S A B C D 8 = 5 a 2 8 (đvdt)
⇒ V S . H K D C = 1 3 . 5 a 2 8 . a 3 = 5 a 3 3 24 (đvtt)