Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.
Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.
Khi đó chứng minh được Cp song song với Ds.
Tương tự chứng minh được Ar song song với Dm.
Từ đó suy ra được: An // Cp và Dm // Bq.
b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.
Từ đó suy ra được: An vuông góc với Bq.
Hok tốt
a) DE // AB, DE = \(\dfrac{1}{2}\)AB, IK // AB, IK = \(\dfrac{1}{2}\)AB
=> DE//IK và DE = IK
b) Xét tg GDE và tg GIK có:
DE = IK (cmt)
GDE = GIK (slt)
GED = GKI (slt)
=> tg GDE = tg GIK (g.c.g)
=> GD = GI ( c.t.ứ)
Có GD = GI = IA nên AG = \(\dfrac{2}{3}\)AD
a,góc b=144
suy ra 2 góc sole nên nó song song với nhau
b,2 đường thẳng song song với nhau vì có 2 góc sole với nhau
c,d làm tương tự
a) góc b = 144
suy ra 2 góc sole nên nó song song với nhau
b. 2 đường thẳng song song với nhau vì có 2 góc sole nhau
c.d làm tương tự
Bài này có nhiều cách giải, ta có thể làm theo cách sau đây.
Từ điểm M vẽ đường thẳng Mn song song với đường thẳng TN.
+) Khi đó, vì ∠TNM + ∠NMn = 180° (hai góc trong cùng phía)
Mà ∠TNM = 120° nên ∠NMn = 60°.
+) Vẽ Mu’ là tia đối của Mu, biết ∠uMN = 150° nên tính được ∠NMu' = 30°.
Vì ∠uMN + ∠NMu’ = 180° (hai góc kề bù) biết ∠uMN = 150° nên tính được ∠NMu' = 30°.
Từ đó ∠nMu' = ∠NMn + ∠NMu' = 60° + 30° = 90°, tức là đường thẳng Mn vuông góc với đường thẳng Mu.
Do đường thẳng Mn song song với đường thẳng TN nên suy ra đường thẳng TN cũng vuông góc với đường thẳng Mu.
Từ đó Tz song song với Mu vì cùng vuông góc với TN.