Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,342MeV.\)
Áp dụng định luật bảo toàn động lượng
PPααpPα12
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)
=> \(\alpha \approx 168^039'.\)
áp dụng định lí hàm cos trong tam giác thì:
a gần bằng 168o39'( 168 độ, 39 phút)
nhớ là gần bằng thui nha
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
ban đầu bản phải viết phương trình ra mới làm được loại này :
Li73 +11p => 2. 42X (heli)
sau đó dùng ct: ΔW=(mtrước -msau).c2 => 1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên.
\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)
Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)
Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)
Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là:
\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)
\(_0^1n + _3^6 Li \rightarrow X + \alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)
P P P He X n
Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)
=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)
=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)
=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)
Từ (1) và (2) giải hệ phương trình
\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)
\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)
Áp dụng định luật bảo toàn động lượng
PPαPLip
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{Li}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)
=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)
=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Phản ứng là tỏa năng lượng nên
\(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(m_p +m_{Li} - 2m_{He} =2K_{He} - K_p\) (do Li đứng yên nên KLi = 0)
=> \(2K_{He} = K_p+(m_p+m_{Li}-2m_{He})c^2 = 1,8 + 0,0187.931 = 19,2097MeV\)
=> \(K_{He} = 9,6 0485 MeV.\)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Phản ứng tỏa năng lượng nên \(W_{tỏa} = (m_t-m_s)c^2 = 2K_{He}-(K_p+K_{Li})\)
=> \( 2K_{He} = (m_p+m_{Li}-2m_{He})c^2+ K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,6 MeV = 9,6.10^6.1,6.10^{-19}J.\)
=> \(v = \sqrt{\frac{2K_{He}}{m_{He}}} = \sqrt{\frac{2.9,6.10^6.1,6.10^{-19}}{4,0015.1,66.10^{-27}}} = 21505282,4 m/s.\)
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
Đáp án A