Cho hàm số y = f(x) liên tục trên R , có đồ thị của đạo hàm f'(x)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Đáp án B

Nhìn đồ thị, ta thấy f' đổi dấu từ dương sang âm khi đi qua điểm x = -2, do đó x = -2 là điểm cực đại của hàm f => C đúng, B sai.

Tương tự, f’ đổi dấu từ âm sang dương khi đi qua điểm x = 0, do đó x = 0 là điểm cực tiểu của hàm f => A đúng.

15 tháng 12 2017

7 tháng 11 2019

 

Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.

Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.

Chọn B

17 tháng 8 2017

Đáp án D

Hàm số  y = f ( x )  đạt cực tiểu tại x 0 = 0  

Hàm số  y = f ( x )  có ba điểm cực trị.

Phương trình  f ( x ) = 0  có 4 nghiệm phân biệt

Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]

8 tháng 12 2017

Đáp án C

28 tháng 12 2017

Đáp án B

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

24 tháng 11 2019

26 tháng 4 2017

Đáp án B

28 tháng 5 2018

Chọn B.

Phương pháp:

Cách giải: Ta có: