K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

+ Gọi  M ( x 0 ;   2 + 3 x 0 - 1 ) ∈ C ,   x 0 ≠ 1 .

Phương trình tiếp tuyến tại M  có dạng

∆ :   y =   - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1

 

+ Giao điểm của ∆   với tiệm cận đứng là  A ( 1 ;   2 + 6 x 0 - 1 )

+ Giao điểm của ∆   với tiệm cận ngang là  B( 2x0-1; 2).

Ta có  S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6

Tam giác IAB vuông tại I có diện tích không đổi nên  chu vi tam giác IAB đạt giá trị nhỏ nhất khi

IA=IB 

 

+Với x 0 = 1 + 3   thì phương trình tiếp tuyến là ∆ :   y = - x + 3 + 2 3  . Suy ra

d O , ∆ = 3 + 2 3 2

+ Với   x 0 = 1 - 3 thì phương trình tiếp tuyến là  ∆ :   y = - x + 3 - 2 3 . Suy ra

d O , ∆ = - 3 + 2 3 2

Vậy khoảng cách lớn nhất là  3 + 2 3 2   gần với giá trị 5 nhất trong các đáp án.

Chọn D.

19 tháng 4 2016

Gọi \(M\left(x_0;y_0\right);y_0=\frac{2x_0-1}{x_0-1}\)

Phương trình tiếp tuyến \(\Delta\) của (C) tại M là :

\(y=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\)

\(\Delta\) cắt tiệm cận đứng x = 1 tại A có tọa độ là nghiệm của hệ

\(\begin{cases}x=1\\y=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\end{cases}\)

Do đó \(A\left(1;\frac{2x_0}{x_0-1}\right)\)

 
\(\Delta\) cắt tiệm cận đứng y = 2 tại B có tọa độ là nghiệm của hệ
\(\begin{cases}y=2\\2=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0+\frac{2x_0-1}{x_0-1}\right)\end{cases}\)\(\Leftrightarrow\begin{cases}y=2\\x=2x_0-1\end{cases}\)
Do đó \(B\left(2x_0-1;2\right)\)
Vì \(x_A+x_B=2x_0-1+1=2x_0\) suy ra M là trung điểm đoạn AB
Ta có \(IA=\frac{2}{\left|x_0-1\right|};IB=2\left|x_0-1\right|\)
Do tam giác AIB vuông tại I nên diện tích tam giác AIB là :
\(S=\frac{1}{2}IA.IB=\frac{1}{2}.\frac{2}{\left|x_0-1\right|}.2\left|x_0-1\right|=2\)
26 tháng 4 2016

Tập xác định : \(D=R\backslash\left\{1\right\}\)

Ta có \(y'=\frac{-1}{\left(x-1\right)^2}\)

Gọi \(M\left(x_o;y_0\right)\) là tiếp điểm

a) Ta có \(y_0=0\Rightarrow x_0=\frac{1}{2}\Rightarrow y'\left(x_0\right)=-4\)

Phương trình tiếp tuyến là : \(y=-4x+2\)

b) Phương trình hoành độ giao điểm của d và (C) :

\(\frac{2x-1}{x-1}=x+1\Leftrightarrow x^2-2x=0\Leftrightarrow x=0;x=2\)

\(x_0=0\Rightarrow\) phương trình tiếp tuyến là : \(y=-x\left(x-0\right)+1=-x+1\)

\(x_0=2\Rightarrow\) phương trình tiếp tuyến là : \(y=-x+5\)

c) Ta có phương trình của đường thẳng \(\Delta:y-\frac{2x_0-1}{x_0-1}=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)\)

hay \(\Delta:\frac{1}{\left(x_0-1\right)^2}x+y-\frac{x_0}{\left(x_0-1\right)^2}-\frac{2x_0-1}{x_0-1}=0\)

Ta có : \(d\left(I;\Delta\right)=\frac{\left|\frac{2}{x_0-1}\right|}{\sqrt{\frac{1}{\left(x_0-1\right)^4}+1}}\le\sqrt{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x_0-1\right)^4=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)

Suy ra có 2 tiếp tuyến là : \(\Delta_1:y=-x+1\)

                                      \(\Delta_2:y=-x+5\)

d) Ta có  : \(\Delta Ox=A\left(2x^2_0-2x_0+1;0\right)\)

                \(OA=1\Leftrightarrow\left|2x^2_0-2x_0+1\right|=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=1\end{array}\right.\)

Suy ra phương trình tiếp tuyến là : \(y=-x+1\)

29 tháng 4 2016

Vì tam giác IAB cân tại I nên tiếp tuyến phải song song với một trong 2 đường thẳng có phương trình \(y=x;y=-x\).

 Ta có \(y'=\frac{1}{\left(x+2\right)^2}>0;x\ne-2\)

Mọi \(M\left(x_0;y_0\right)\) là tiếp điểm thì \(y'\left(x_0\right)=1\Leftrightarrow1=\frac{1}{\left(x_0+2\right)^2}\Leftrightarrow\left[\begin{array}{nghiempt}x_0=-1\\x_0=-3\end{array}\right.\)

Từ đó suy ra 2 tiếp tuyến là \(y=x+1;y=x+5\)

19 tháng 4 2016

Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)

Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến  tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)

Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)

Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)

Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)

29 tháng 4 2016

Xét : \(M\left(x_0;x_0+1+\frac{1}{x_0+1}\right)\)

Tiếp tuyến tại M có phương trình \(y=\left(1-m^2\right)x+m^2+2m+1\) (với \(m=\frac{1}{x_0-1}\))

tiếp tuyến cắt tiệm  cận đứng tại \(A\left(1;2m+2\right)\); cắt tiệm cận tại \(B\left(1+\frac{2}{m};2+\frac{2}{m}\right)\) và hai tiệm cận cắt nhau tại I(1;2)

Chu vi tam giác ABI : \(P=AB+BI+IA=\sqrt{4m^2+\frac{8}{m^2}+8}+\frac{2\sqrt{2}}{\left|m\right|}+2\left|m\right|\)

Áp dụng Bất đẳng thức Côsi, ta có :

\(4m^2+\frac{8}{m^2}\ge8\sqrt{2};\frac{2\sqrt{2}}{\left|m\right|}+2\left|m\right|\ge4\sqrt[4]{2}\Rightarrow P\ge\sqrt{8\sqrt{2}+8}+4\sqrt[4]{2}\)

Đẳng thức xảy ra \(\Leftrightarrow m=\pm\sqrt[4]{2}\)

Vậy \(M\left(1\pm\frac{1}{\sqrt[4]{2}};2\pm\frac{1}{\sqrt[4]{2}}\pm\sqrt[4]{2}\right)\)

8 tháng 8 2020

2mx nha bạn

NV
8 tháng 8 2020

1.

Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng

Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)

Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)

2.

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ

\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận

Vậy ĐTHS có 2 tiệm cận

3.

Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;-5\right\}\)

Đề bài sai hoặc đáp án sai

6 tháng 4 2016

Xét phương trình hoành độ giao điểm của đồ thị (C) và d :

\(\frac{2x+3}{x+2}=-2x+m\)\(\Leftrightarrow\begin{cases}x\ne-2\\2x^2+\left(6-m\right)x+3-2m=0\end{cases}\) (*)

Xét phương trình (*), ta có \(\Delta>0\), mọi \(m\in R\) và x=-2 không là nghiệm của (*) nên d luôn cắt đồ thị (C) tại 2 điểm phân biệt A, B với mọi m

Hệ số góc của tiếp tuyến tại A, tại B lần lượt là :

\(k_1=\frac{1}{\left(x_1+1\right)^2};k_2=\frac{1}{\left(x_2+1\right)^2}\) trong đó \(x_1,x_2\) là 2 nghiệm của phương trình (*)

Ta thấy :

\(k_1.k_2=\frac{1}{\left(x_1+1\right)^2.\left(x_2+1\right)^2}=\frac{1}{\left(x_1x_2+2x_1+2x_2+4\right)^2}=4\)  (\(k_1>0;k_2>0\) )

Có \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\ge2\sqrt{\left(k_1k_2\right)^{2014}}=2^{2015}\)

Do đó , Min \(P=2^{2015}\) đạt được khi và chỉ khi \(k_1=k_2\)

\(\Leftrightarrow\frac{1}{\left(x_1+2\right)^2}=\frac{1}{\left(x_2+2\right)^2}\Leftrightarrow\left(x_1+2\right)^2=\left(x_2+2\right)^2\)

Do \(x_1,x_2\) phân biệt nên ta có \(x_1+2=-x_2-2\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow m=-2\)

Vậy giá trị cần tìm là \(m=-2\)

3 tháng 5 2016

Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)

a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)

\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)

 

b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)

\(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)

\(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)

 
c. Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)
Tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng
\(y=x+1\Leftrightarrow y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(m-1\right)^2}=-1\)
\(\Leftrightarrow m=0;m=2\)