Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Phương pháp
Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1
Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
Đáp án B.
Phương pháp: Tìm điều kiện để phương trình hoành độ giao điểm có ba nghiệm phân biệt thỏa mãn x A = 2 , hoặc x B < - 1 < x C < 1 hoặc - 1 < x B < 1 < x C
Cách giải:
Đồ thị hàm số y = x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 luôn đi qua điểm A(2;0)
Xét phương trình hoành độ giao điểm
x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 = 0
Để phương trình có 3 nghiệm phân biệt ó pt (*) có 2 nghiệm phân biệt khác 2
Giả sử x B ; x C ( x B < x C ) là 2 nghiệm phân biệt của phương trình (*).
Để hai điểm B, C một điểm nằm trong một điểm nằm ngoài đường tròn x2 + y2 = 1
TH1:
TH2:
Kết hợp điều kiện ta có:
Lại có m ∈ [–10;100]
=> Có 108 giá trị m nguyên thỏa mãn yêu cầu bái toán
Đáp án A
Phương trình hoành độ giao điểm của C m và trục hoành là
x 3 − 2 x 2 + 1 − m x + m = 0 ⇔ x − 1 x 2 − x − m = 0 ⇔ x = 1 x 2 − x − m = 0 1
C m cắt trục hoành tại ba điểm phân biệt ⇔ Phương trình (1) có hai nghiệm phân biệt khác 1 ⇔ Δ > 0 1 − 1 − m ≠ 0 ⇔ 1 + 4 m > 0 m ≠ 0 ⇔ m > − 1 4 m ≠ 0 *
Gọi x 3 = 1 còn x 1 , x 2 là nghiệm phương trình (1) nên theo Vi-et ta có x 1 + x 2 = 1 x 1 x 2 = − m .
Vậy x 1 2 + x 2 2 + x 3 2 = 4 ⇔ x 1 2 + x 2 2 + 1 = 4 ⇔ x 1 + x 2 2 − 2 x 1 x 2 − 3 = 0 ⇔ m = 1 (thỏa (*))
Vậy chọn m = 1.
Đáp án B
Lấy đối xứng đồ thị hàm số f(x)(x-1) qua trục Ox ta được đồ thị của hàm số f x x - 1 . Từ đồ thị hàm số f x x - 1 ta thấy đường thẳng y = m 2 - m cắt hàm số f x x - 1 tại 2 điểm nằm ngoài [-1;1]
⇔ m 2 - m > 0 ⇔ [ m < 0 m > 1
Chọn A.
Xét PT hoành độ x 3 − 2 x 2 + 1 − m x + m = 0 (1)
Để C m cắt Ox tại 3 điểm có hoành độ là x 1 ; x 2 ; x 3 , tức PT (1) có 3 nghiệm phân biệt là x 1 ; x 2 ; x 3
Áp dụng vi –ét có : x 1 + x 2 + x 3 = − b a = − − 2 1 = 2 x 1 x 2 + x 2 x 3 + x 1 x 3 = c a = 1 − m 1 = 1 − m x 1 x 2 x 3 = − d a = − m 1 = − m
theo bài ta có
x 1 2 + x 2 2 + x 3 2 = 4 ⇔ x 1 + x 2 + x 3 2 − 2 x 1 x 2 + x 2 x 3 + x 1 x 3 = 4 ⇔ 2 2 − 2 1 − m = 4 ⇔ 4 − 2 + 2 m = 4 ⇔ 2 m = 2 ⇔ m = 1
Chọn đáp án A