Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\);
\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)
Để Min P = 1 và Max P = 4 thì
\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)
(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3)
(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4)
Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4
Vậy \(P=\frac{-4x+3}{x^2+1}\)
ĐK \(x\ge y\)
Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\)
HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)
Giải (1) ; kết hợp điều kiện => b = 1
=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4)
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm
Bài này dễ ẹc, cho tí não vào là ok
Giải
Dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\) khi đó ta tìm dc \(S=2\)
Ta sẽ chứng minh nó là GTNN của \(S\)
Thật vậy, theo BĐT Cauchy-Schwarz ta có:
\(Σ\frac{a^2+b}{b+c}\ge\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\)
Vậy ta chỉ cần chứng minh rằng \(\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\ge2\)
\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)
BĐT cuối cùng có thể biến đổi như sau:
\(1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)
\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2-2Σa^3+2Σab\)
\(\Leftrightarrow\left(Σa^2\right)^2+2Σa^3\geΣa^2\) điều này đúng, vì
\(Σa^3\ge\frac{Σa^2}{3}\)(BĐT Chebyshev). Và \(\left(Σa^2\right)^2\ge\frac{Σa^2}{3}\)
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1