Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(12⋮3\\ 15⋮3\\ 21⋮3\)
Để \(A⋮3\) thì \(x⋮3\)
Để \(A⋮̸3\) thì \(x⋮̸3\)
Để \(A⋮3\Rightarrow12+15+21+x⋮3\)
Mà : \(12⋮3\) ; \(15⋮3\) ; \(21⋮3\)
\(\Rightarrow x⋮3\left(x\in N\right)\Rightarrow x=3k\left(k\in N\right)\)
Để \(A⋮̸\) 3 \(\Rightarrow12+15+21+x⋮̸\) 3 \(\left(x\in N\right)\)
Mà : \(12⋮3\) ; \(15⋮3\) ; \(21⋮3\)
\(\Rightarrow x⋮̸\) 3 \(\Rightarrow x=3k+r\left(r\in\left\{1;2\right\}\right)\)
Vậy ...
Để A chia hết cho 3 thì:
\(1212+15+21+x⋮3\)
Mà: 1212,15,21 đều chia hết cho 3 nên x cũng chia hết cho 3.
\(\Rightarrow x\in B\left(3\right)\)
Như vậy để x không chia hết cho 3 thì:
\(\Rightarrow x\in B\left(3k+1\right),x\in\left(3k+2\right)\)