K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

Giả sử 4 góc A, B, C, D (với A< B< C< D) theo thứ tự đó lập thành cấp số nhân thỏa yêu cầu với công bội q. Ta có

A + B + C + D = 360 D = 27 A ⇔ A 1 + q + q 2 + q 3 = 360 A q 3 = 27 A ⇔ q = 3 A = 9 D = A q 3 = 243 ⇒ A + D = 9 ​ + ​    243   =    252.

Chọn đáp án C.

20 tháng 4 2016

Gọi d = 2a là công sai. Bốn số phải tìm là \(A=\left(x-3a\right);B=\left(x-a\right);C=\left(x+a\right);D=\left(x+3a\right)\)

Ta có hệ phương trình :

\(\begin{cases}\left(x-3a\right)+\left(x-a\right)+\left(x+a\right)+\left(x+3a\right)=360^0\\\left(x+3a\right)=5\left(x-3a\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x=90^0\\a=20^0\end{cases}\)

Bốn góc phải tìm là : \(A=30^0;B=70^0;C=110^0;D=150^0\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Giả sử số đo bốn góc của tứ giác lần lượt là \({u_1},{u_1}.q,{u_1}.{q^2},{u_1}.{q^3}\left( {{u_1},q > 0} \right)\).

Tổng số đo bốn góc của một tứ giác bằng \({360^ \circ }\) nên ta có phương trình:

\({u_1} + {u_1}.q + {u_1}.{q^2} + {u_1}.{q^3} = 360 \Leftrightarrow {u_1}\left( {1 + q + {q^2} + {q^3}} \right) = 360\left( 1 \right)\)

Số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất nên ta có phương trình:

\(\frac{{{u_1}.{q^3}}}{{{u_1}}} = 8 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\left( 2 \right)\)

Thế (2) vào (1) ta có: \({u_1}\left( {1 + 2 + {2^2} + {2^3}} \right) = 360 \Leftrightarrow {u_1} = 24\)

Vậy số đo bốn góc của tứ giác đó là: \({24^ \circ };{24^ \circ }.2 = {48^ \circ };{24^ \circ }{.2^2} = {96^ \circ };{24^ \circ }{.2^3} = {192^ \circ }\).

b) Giả sử cấp số nhân đó có số hạng đầu \({u_1}\) và công bội \(q\).

Theo đề bài ta có: \(\left\{ \begin{array}{l}{u_1} =  - 2\\{u_8} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{u_1}.{q^7} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{q^7} =  - 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\q =  - 2\end{array} \right.\).

Vậy ta cần viết thêm sáu số là:

\( - 2.\left( { - 2} \right) = 4;4.\left( { - 2} \right) =  - 8;\left( { - 8} \right).\left( { - 2} \right) = 16;16.\left( { - 2} \right) =  - 32;\left( { - 32} \right).\left( { - 2} \right) = 64;64.\left( { - 2} \right) =  - 128\)

Số hạng thứ 15 của cấp số nhân là: \({u_{15}} = {u_1}.{q^{14}} =  - 2.{\left( { - 2} \right)^{14}} =  - 32768\).

21 tháng 4 2016

Giả sử 3 cạnh của tam giác ABC theo thứ tự a, b, c. Không giảm tính tổng quát, ta giả sử 0 < a \(\le b\le c\), nếu chúng tạo thành cấp số nhân thì, theo tính chất của cấp số nhân ta có : \(b^2=ac\)

Theo định lí hàm số côsin, ta có :

\(b^2=a^2+c^2-2ac\cos B\Rightarrow ac=a^2+c^2-2ac.\cos B\)

                                     \(\Leftrightarrow\cos B=\frac{a^2+c^2}{2ac}-\frac{1}{2}\)

Mặt khác \(a^2+c^2\ge2ac\Rightarrow\cos B\ge1-\frac{1}{2}=\frac{1}{2}\)

Vậy góc \(B\le60^0\)

Nhưng \(a\le b\Rightarrow A\le60^0\) cho nên tam giác ABC có 2 góc không quá \(60^0\)

12 tháng 1 2017

Chọn A

Gọi d=2a là công sai. Bốn số phải tìm là:

A=(x-3a); B=(x-a); C=(x+a); D=(x+3a). Ta có hệ phương trình:

2 tháng 10 2018

ta có : \(sin\left(3x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\3x-\dfrac{\pi}{4}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}\\x=\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}\end{matrix}\right.\)

giả sử \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}< 0\\\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k< -\dfrac{7}{24}\\k< -\dfrac{11}{24}\end{matrix}\right.\) \(\Rightarrow k=-1\) là số lớn nhất ở đây

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-17\pi}{36}\\x=\dfrac{-13\pi}{36}\end{matrix}\right.\) \(\Rightarrow x^-_{max}=\dfrac{-13\pi}{36}\)

giả sử \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7\pi}{36}+\dfrac{2k\pi}{3}>0\\\dfrac{11\pi}{36}+\dfrac{2k\pi}{3}>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}k>-\dfrac{7}{24}\\k>-\dfrac{11}{24}\end{matrix}\right.\) \(\Rightarrow k=0\) là số nhỏ nhất ở đây

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7\pi}{36}\\x=\dfrac{11\pi}{36}\end{matrix}\right.\) \(\Rightarrow x^+_{min}=\dfrac{7\pi}{36}\)

\(\Rightarrow\) tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của pt là

\(\dfrac{-13\pi}{36}+\dfrac{7\pi}{36}=\dfrac{-\pi}{6}\)

đổi ra độ ta có : \(\dfrac{-\pi}{6}=-30^o\) \(\Rightarrow\) (B)

2 tháng 10 2018

x\(^-\)?

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

14 tháng 4 2016

- Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox

- Nối A’B’ cắt Ox tại B , cắt Oy tại C . Đó chính là hai điểm cần tìm

- Chứng minh B,C là hai điểm duy nhất cần tìm .

Thật vậy : Do A’ đối xứng với A qua Oy , cho nên CA=CA’ (1) . Mặt khác : B’ đối xứng với A qua Ox cho nên ta có BA=BB’ (2) .

Gọi P là chu vi tam giác ABC - do từ (1) và (2) - thì P=CA+CB+BA =CA’+CB+BB’=A’B’ 

9 tháng 4 2017

Theo giả thiết ta có: A, B, C, D là một cấp số nhân và C = 4A

Theo tính chất của cấp số nhân ta có:

B2 = AC = A.(4A) = 4A2 ⇒ B = 2A

C2 = BD ⇒ (4A)2 = (2A).D ⇒ D = 8A

Mặt khác: A + B + C + D = 3600

⇒ A + 2A + 4A + 8A = 3600

⇒ A = 240 ⇒ B = 480, C = 960, D = 1920.