Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b}<\frac{c}{d}\)
\(ad<\)\(bc\)
\(\Rightarrow3ad<\)\(3bc\)
\(\Rightarrow2ab+3ad<2ab+3bc\)
\(\Rightarrow a\left(2b+3d\right)<\)\(b\left(2a+3c\right)\)
\(\Rightarrow\frac{a}{b}<\)\(\frac{2a+3c}{2b+3d}\)
Vậy ...
\(\frac{3}{4}\)-\(\frac{-5}{9}\)-\(\frac{11}{36}\)=\(\frac{27}{36}\)-\(\frac{-20}{36}\)-\(\frac{11}{36}\)=1
\(\frac{1}{9}\)+\(\frac{-5}{3}\)-\(\frac{-13}{18}\)=\(\frac{2}{18}\)+\(\frac{-30}{18}\)-\(\frac{-13}{18}\)=\(\frac{-15}{18}\)=\(\frac{-5}{6}\)
\(\frac{3}{4}-\frac{-5}{9}-\frac{11}{36}=\frac{27}{36}-\frac{-20}{36}-\frac{11}{36}=\frac{47}{36}-\frac{11}{36}=\frac{36}{36}=1\)
\(\frac{1}{9}+\frac{-5}{3}-\frac{13}{18}=\frac{2}{18}+\frac{-30}{18}-\frac{13}{18}=\frac{-28}{18}+\frac{13}{18}=\frac{-15}{18}=\frac{-5}{6}\)
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
(1/2*X+2/1/4)*-2/3=2/5/6
(1/2*X+9/4)*-2/3=17/6
(1/2*X+9/4)=-17/4
1/2*X=-13/2
X=-13
Đặt ưcln(n+3,n+4)=d(d€N*)
=>{n+3,n+4 chia hếtcho d
=>{4n+12,3n+12 chia hết cho d
=>4n+12-(3n+12)chia hết cho d
=>4n+12-3n-12 chia hết cho d
=>1chia hết cho d
=>d€ Ư(1)={ +-1}
Vậy n+3,n+4 nguyên tố cùng nhau
b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )
=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d
=> 1 \(⋮\) d ; d \(\in\) N*
=> d = 1
Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.
B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra : B > 1/4 + 1/2 + 1/2 > 1