\(b=\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+4+...+100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

28 tháng 3 2017

Ta có :

\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)\)

\(=100-1-\dfrac{1}{2}-\dfrac{1}{3}-..................-\dfrac{1}{100}\)

\(=99-\dfrac{1}{2}-\dfrac{1}{3}-................-\dfrac{1}{100}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+..................+\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+.................+\dfrac{99}{100}\)

Vậy :\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+....................+\dfrac{99}{100}\)

\(\Rightarrowđpcm\)

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3

=>x=-16/3:7/3=-7/16

2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35

=>|x-2|=129/35

=>x-2=129/35 hoặc x-2=-129/35

=>x=199/35 hoặc x=-59/35

14 tháng 4 2017

Bài 1: Tìm x biết:

a) \(\dfrac{6}{5}-2\left|1-3x\right|=1\dfrac{2}{3}\)

\(2\left|1-3x\right|=\dfrac{6}{5}-1\dfrac{2}{3}\)

\(2\left|1-3x\right|=\dfrac{-7}{15}\)

\(\left|1-3x\right|=\dfrac{-7}{15}:2\)

\(\left|1-3x\right|=\dfrac{-7}{30}\)

\(\left|1-3x\right|\in N\) nhưng \(\dfrac{-7}{30}\notin N\)

\(\Rightarrow x=\varnothing\)

b) \(\left(2,8x+50\right):\dfrac{-3}{2}=51\)

\(\left(2,8x+50\right)=51.\dfrac{-3}{2}\)

\(2,8x+50=\dfrac{-153}{2}\)

\(2,8x=\dfrac{-153}{2}-50\)

\(2,8x=\dfrac{-253}{2}\)

\(x=\dfrac{-253}{2}:2,8\)

\(x=\dfrac{-1265}{28}\)

c) \(\dfrac{x-2}{-2}=\dfrac{x+4}{3}\)

\(\Rightarrow\left(x-2\right).3=-2.\left(x+4\right)\)

\(x.3-2.3=\left(-2\right).x+\left(-2\right).4\)

\(3x-6=\left(-2\right)x+\left(-8\right)\)

\(3x-\left(-2\right)x=6+\left(-8\right)\)

\(5x=-2\)

\(x=\left(-2\right):5\)

\(x=\dfrac{-2}{5}\)

d) \(4\left(3-2x\right)-5\left(x-1\right)=12\)

\(4.3-4.2x-5x+5.1=12\)

\(12-8x-5x+5=12\)

\(12+\left(-8\right)x+\left(-5\right)x+5=12\)

\(12+\left(-13\right)x+5=12\)

\(\left(-13\right)x=12-12-5\)

\(\left(-13\right)x=-5\)

\(x=\left(-5\right):\left(-13\right)\)

\(x=\dfrac{5}{13}\)

14 tháng 4 2017

Bài 2: Chứng minh:

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\) (đpcm)

6 tháng 4 2017

mọi người thật là nhẫn tâm

chẳng ai giúp mk

TRỜI ƠI!!! AI MS LÀ BN BÈ THỰC SỰkhocroi

7 tháng 4 2017

Ko cs đứa mô trả lời chứ chi

Loại bn bè vs mấy ng chỉ là giả tạo thôi

2 tháng 5 2017

2)

\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)

Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)\(C\)

\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)

\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)

Vậy \(D< 100\)

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

16 tháng 3 2017

Ta có:\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{100}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{100}\right)\)\(=\left(1+1+...+1\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)

\(=100-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)(đpcm)