Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
(vì góc BOD là góc ngoài)
(Do BO,CO là các tia phân giác của tam giác ABC)
Vẽ hình ra nhé. Mà ^ kí hiệu là góc ha .
Trong tam giác OGC có góc GOC = 90độ trừ ^OCG
hay ^GOC = 90 độ - ^ACB /2 (1)
^BOD là góc ngoài tam giác AOB tại O => ^BOD = ^BAO+^ABO hay ^BOD= ^BAC/2+^ABC/2
=> ^BOD= (180độ - ^ACB) /2 = 90 độ - ^ ACB/2 (2)
Từ (1) và (2) ta có ^GOC=^BOD
Mà ^BOG+ ^GOD = ^BOD
^COD+^DOG =^COG
=> BOG = COD
A B C D E F G O
đÂY LÀ HÌNH Cho tam giác ABC. Vẽ ba đường phân giác AD; BE; CF cắt nhau tại O. Kẻ OG vuông góc BC tại G. Chứng minh rằng góc BOG = góc COD.Mình được gợi ý là dùng góc ngoài. Mình cần cách giải gấp trong một tuần. Giúp mình nhé
a, Xét tg BAE và tg BDE ( \(\widehat{BAE}=\widehat{BDE}=90^0\))
BA=BD (gt)
BE chung
=> tg BAE = tg BDE ( ch-cgv)
=> AE=ED
Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm)
b, +ED vuông BC
+ AH vuông BC
=> AH//DE
=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)
Lại có gọi m là giao 2 đường thẳng BE và AD
vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)
Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)
+ AD = ED (cma)
+ EM chung
=> tg AEM = tg DEM ( ch-cgv)
=> \(\widehat{DAE}=\widehat{ADE}\)(2)
tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC
Để chứng minh ∠(BOG) = ∠(COD), ta chứng minh ∠(BOD) = ∠(GOC).
+) Tổng ba góc trong 1 tam giác bằng 180º nên :
+) Xét tam giác OAB, ta có góc ∠BOD là góc ngoài tam giác tại đỉnh O nên:
Lại có: BO và AO là tia phân giác của góc B và góc A nên:
Xét tam giác vuông OCG ta có: