\(A=\frac{x^2+2x}{x\left(x-3\right)}\)

a) Rút gọn biểu thức A

b) Với giá trị...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

\(a,A=\frac{x^2+2x}{x\left(x-3\right)}=\frac{x\left(x+2\right)}{x\left(x-3\right)}=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)


\(b,A< 0< =>1-\frac{5}{x+3}< 0< =>\frac{5}{x+3}>1< =>5>x+3< =>x>2\)

Vậy...........................

9 tháng 5 2018

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

với ĐKXĐ ta có

=\(\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{7\left(x-1\right)}\)

=\(\frac{4x}{\left(x+1\right)\left(x-1\right)}\times\frac{7\left(x-1\right)}{2x}\)

=\(\frac{14}{x+1}\)

b, x=6(t/m)

khi x=6 thì A=\(\frac{14}{6+1}=2\)

c,A=7<=>\(\frac{14}{x+1}=7\)

         \(\Leftrightarrow7x+7=14\)

           \(\Leftrightarrow7x=7\Leftrightarrow x=1\left(loại\right)\)

Vậy ko có giá trị x để A=7

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

30 tháng 1 2019

\(\text{Giải}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{4x^2-16}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{x+2}{2x-4}-\frac{2-x}{2x+4}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{\left(x+2\right)\left(2x+4\right)}{\left(2x-4\right)\left(2x+4\right)}-\frac{\left(2-x\right)\left(2x-4\right)}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\left(\frac{2x^2+8x+8}{\left(2x-4\right)\left(2x+4\right)}-\frac{4x^2-8+4x}{\left(2x-4\right)\left(2x+4\right)}+\frac{32}{\left(2x-4\right)\left(2x+4\right)}\right):\frac{x-1}{x-2}\)

\(A=\frac{2x^2+8x+8-4x^2+8-4x+32}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{4x-2x^2+48}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}\)

\(A=\frac{2\left(2x-x^2+24\right)}{\left(2x-4\right)\left(2x+4\right)}:\frac{x-1}{x-2}=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{\left(2x-4\right)\left(2x+4\right)\left(x-1\right)}\)

\(=\frac{2\left(2x-x^2+24\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)\left(x-1\right)}=\frac{2x-x^2+24}{\left(x-2\right)\left(x-1\right)}\)

c, Bạn tự giải hệ pt nhé :)

8 tháng 3 2020

 \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

a) Để A có nghĩa \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}}\Leftrightarrow x\ne\pm1\)

b) Ta có \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

\(\Rightarrow2A=\frac{x}{x-1}+\frac{x^2+1}{1-x^2}=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x-x^2-1}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)

\(\Rightarrow A=\frac{1}{2x+2}\)

KL...

c) Để \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1}{2x+2}=\frac{1}{2}\)

\(\Leftrightarrow2x+2=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(t/m ĐKXĐ)

KL...