Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{3a+b+c}=\frac{a}{2a+a+b+c}\le\frac{1}{25}\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)=\frac{2}{25}+\frac{9}{25}\left(\frac{a}{a+b+c}\right)\)
Tương tự: \(\frac{b}{a+3b+c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{b}{a+b+c}\right)\) ; \(\frac{c}{a+b+3c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{c}{a+b+c}\right)\)
Cộng vế với vế:
\(VT\le\frac{6}{25}+\frac{9}{25}\left(\frac{a+b+c}{a+b+c}\right)=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Xét: \(\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\)
\(\Leftrightarrow\frac{2a+b+c}{\left(a+b+c\right)a+bc}+\frac{a+2b+c}{\left(a+b+c\right)b+ca}+\frac{a+b+2c}{\left(a+b+c\right)c+ab}\)
\(\Leftrightarrow\frac{2a+b+c}{a^2+ab+ca+bc}+\frac{a+2b+c}{ab+b^2+bc+ca}+\frac{a+b+2c}{ac+bc+c^2+ab}\)
\(\Leftrightarrow\frac{2a+b+c}{a\left(a+b\right)+c\left(a+b\right)}+\frac{a+2b+c}{b\left(b+a\right)+c\left(b+a\right)}+\frac{a+b+2c}{c\left(a+c\right)+b\left(a+c\right)}\)
\(\Leftrightarrow\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}+\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}+\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a+c\right)\le\left(\frac{2a+b+c}{2}\right)^2=\frac{\left(2a+b+c\right)^2}{4}\\\left(b+a\right)\left(b+c\right)\le\left(\frac{a+2b+c}{2}\right)^2=\frac{\left(a+2b+c\right)^2}{4}\\\left(a+c\right)\left(b+c\right)\le\left(\frac{a+b+2c}{2}\right)^2=\frac{\left(a+b+2c\right)^2}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{2a+b+c}{\left(a+b\right)\left(a+c\right)}\ge\frac{4\left(2a+b+c\right)}{\left(2a+b+c\right)^2}=\frac{4}{2a+b+c}\\\frac{a+2b+c}{\left(b+a\right)\left(b+c\right)}\ge\frac{4\left(a+2b+c\right)}{\left(a+2b+c\right)^2}=\frac{4}{a+2b+c}\\\frac{a+b+2c}{\left(a+c\right)\left(b+c\right)}\ge\frac{4\left(a+b+2c\right)}{\left(a+b+2c\right)^2}=\frac{4}{a+b+2c}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
Xét: \(\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\ge\frac{\left(2+2+2\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{36}{4\left(a+b+c\right)}=\frac{36}{12}=3\)
Mà \(VT\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
\(\Rightarrow VT\ge3\)
\(\Leftrightarrow\frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\ge3\) ( đpcm )
Ta có:
\(3a+bc=(a+b+c)a+bc=(a+c)(a+b)\)
\(\Rightarrow \sum \frac{a+3}{3a+bc}\)\(= \sum \frac{(a+c)+(a+b)}{(a+c)(a+b)}=2 \sum \frac{1}{a+b}\geq 2.\frac{9}{2(a+b+c)}=3\)
Gọi VT = T
Đặt \(x=3a+b+c;y=3b+c+a;z=3c+a+b\)
\(\Rightarrow x+y+z=5\left(a+b+c\right)=5\left(x-2a\right)=5\left(y-2b\right)\)
\(=5\left(z-2c\right)\)
\(\Rightarrow4x-\left(y+z\right)=10a;4y-\left(z+x\right)=10b;4z-\left(x+y\right)=10c\)
\(\Rightarrow10T=\frac{4x-\left(y+z\right)}{x}+\frac{4y-\left(z+x\right)}{y}+\frac{4z-\left(x+y\right)}{z}\)
\(=12-\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\le12-6=6\)
\(\Rightarrow T\le\frac{6}{10}=\frac{3}{5}\)
Dấu "=" khi a = b = c