Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm
A)\(A^2+B^2\ge AB+AB\)
\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)
\(\Leftrightarrow A^2-2AB+B^2\ge0\)
\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)
Vậy \(A^2+B^2\ge AB+AB\)(đpcm)
- Nếu \(a,b\) là hai số dương thì:
\(ab^3+a^3b-a^2b^2=ab\left(a^2+b^2\right)-a^2b^2\)\(\le\dfrac{\left(a^2+b^2\right)}{2}\left(a^2+b^2\right)-a^2b^2\)\(=\dfrac{\left(a^2+b^2\right)^2-2a^2b^2}{2}=\dfrac{a^4+b^4}{2}\left(đpcm\right)\).
a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
Dấu "=" xảy ra khi a = b
b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)
c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)
\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)
\(\Rightarrow a^4+b^4+2\ge4ab\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)
\(\Leftrightarrow2\left(a^4+b^4\right)-ab^3-a^3b-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)+\left(a^4+b^4-2a^2b^2\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{2}\right]+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
Xảy ra khi \(a=b=0\)
Chứng minh:
Biến đổi tương đương, ta có:
\(a^4+b^4\ge a^3b+ab^3\Rightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)\left(a-b\right)\ge0\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow\left(a^2-2a\frac{b}{2}+\left(\frac{b}{2}\right)^2+\frac{3}{4}b^2\right)\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\)đpcm
ủa mà bạn ơi, Hằng đẳng thức a^3-b^3 là (a-b)(a^2+ab+b^2) mà
bạn bị lộn HĐT nên kết quả ra sai r kìa
mik nghĩ v, bạn xem lại nha
a4+b4 >= a3b+ab3
<=> chuyển vế phải qua
<=> a3(a-b)+b3(a-b)>=0
<=> (a-b)(a3-b3)>=0
<=> (a-b)(a-b)(a2+ab+b2)>=0
<=> (a-b)2(a2+ab+b2)>=0
vì (a-b)2 luôn >= 0
a2ab+b2>=0 (luôn luôn)
<=> a^4 + b^4 - a^3b - ab^3 >= 0
<=> a^3( a -b) + b^3(a -b) >= 0
<=> (a -b)(a^3 + b^3) >= 0
<=> (a -b)^2 (a^2 + ab + b^2) >= 0 ; (luôn đúng vs mọi a,b)
=> Đpcm
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Dấu " = " xảy ra <=> a=b=c=1
Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )
Dấu " = " xảy ra <=> a=b=c
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)
Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )
Bạn vào câu hỏi tương tự sẽ có lời giải !
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)\left(a^2+ab+b^2\right)\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(luôn đúng )
Vậy ta có ĐPCM