\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\a-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)

Ta có:

\(x^2+y^2+z^2=\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+2xz+2yz-2xy=0\)

\(\Leftrightarrow z^2+2xz+2yz+\left(x-y\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)

\(\Rightarrow z^2+2xz+2yz+\left(x-y\right)^2\ge0\)

Dấu = xảy ra khi \(x=y=z=0\)

Hay \(a=b=c\)

30 tháng 6 2017

\(VT=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca\)

\(VP=\left[\left(a+b\right)-2c\right]^2+\left[\left(b+c\right)-2a\right]^2+\left[\left(c+a\right)-2b\right]^2\)

\(=\left(a+b\right)^2-4\left(a+b\right)c+4c^2+\left(b+c\right)^2-4\left(b+c\right)a+4a^2+\left(a+c\right)^2-4\left(a+c\right)b+4b^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)

Nhìn vào thấy 2 vế có \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\) rút gọn luôn thì được

\(-4ab-4bc-4ca=-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)

\(\Rightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ac-\left(a+c\right)c+b^2=0\)

\(\Rightarrow ab-ac-bc+c^2+bc-ab-ac+a^2+ac-ab-bc+b^2=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)

7 tháng 8 2017

1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2

= ( a2 + 2ab +b) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )

= ( a + b )2 + ( a + c )+ ( b + c )2

1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c)

= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2

= 2a2 + 2b+ 2c2 - 2ab - 2ac - 2bc

= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )

= (a-b)2 + (a-c)+ (b-c)2

26 tháng 10 2018

câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)

câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)

= (c2-(a-b)2).((a+b)2-c2)

= (c-a+b).(c+a-b).(a+b-c).(a+b+c)

câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)

câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c

a,b,c bình đẳng => A chia hết cho c-a , a-b

=>A= k(a-b)(b-c)(c-a)

thay thử một bộ a,b,c bất kì => k=? (mình đang vội )

thay k tính đc vàoA= k(a-b)(b-c)(c-a)

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

Đặt \(a+b+c=t\)

\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)

\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)

\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)

\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)

\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)

\(=12t^2+9m-12t^2=9m\)

21 tháng 9 2018

\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)

\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)

Đặt \(a+b+c=n\)

\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)

\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)

\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)

Ta có: \(a^2+b^2+c^2=m\)

\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)

\(A=9m\)

Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)

Tham khảo nhé~

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$