\(2\sqrt{144x+144}-3\sqrt{100x-100}=12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

\(\text{ĐKXĐ: }x\ge0;x\ne\pm1\)

\(2\sqrt{144x+144}-3\sqrt{100x-100}=12\)

\(2\sqrt{144\left(x+1\right)}-3\sqrt{100\left(x-1\right)}=12\)

\(2\sqrt{144}.\sqrt{\left(x+1\right)}-3\sqrt{100}.\sqrt{x-1}=12\)

\(2.12\sqrt{x+1}-3.10\sqrt{x-1}=12\)

\(24\sqrt{x+1}-30\sqrt{x-1}=12\)

\(6.\left(4\sqrt{x+1}-5\sqrt{x-1}\right)=6.2\)

\(4\sqrt{x+1}-5\sqrt{x-1}=2\)

\(\text{Mk bí r}\)

2 tháng 11 2020

\(1,\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(\sqrt{9.5}\sqrt{4.5}+\sqrt{5}\right).\frac{1}{\sqrt{6}}\)

\(=\frac{2\sqrt{5}}{\sqrt{6}}\)

\(=\frac{\sqrt{30}}{3}\)

3 tháng 11 2020

1) \(\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(\sqrt{9.5}-\sqrt{4.5}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)

\(=\frac{2\sqrt{5}}{\sqrt{6}}\)

\(=\frac{2\sqrt{5}\sqrt{6}}{\sqrt{6}.\sqrt{6}}\)

\(=\frac{2\sqrt{30}}{6}\)

\(=\frac{\sqrt{30}}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

4 tháng 7 2018

a> \(\sqrt{25x}=35\)

\(5\sqrt{x}=35\)

\(\sqrt{x}=7\)

⇔ x=49

vậy x=49

b) \(4\sqrt{x}=\sqrt{48}\)

\(4\sqrt{x}=\sqrt{16}.\sqrt{3}\)

\(4\sqrt{x}=4\sqrt{3}\)

\(\sqrt{x}=\sqrt{3}\)

⇔ x=3

vậy x=3

\(\sqrt{144x}\le132\)

\(12\sqrt{x}\le132\)

\(\sqrt{x}\le11\)

⇔ x≤121

vậy x≤121

d \(3\sqrt{x}>\sqrt{10}\)

\(\sqrt{9x}>\sqrt{10}\)

⇔ 9x > 10

⇔ x > \(\dfrac{10}{9}\)

vậy x > \(\dfrac{10}{9}\)

3 tháng 7 2018

\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7

\(\dfrac{2\cdot3+3\cdot6}{4}\)=6

\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1

\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)

\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))

=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)

\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)

=\(\sqrt{3}\cdot\left(3+10-2\right)\)

=\(11\sqrt{3}\)

13 tháng 6 2018

\(a)\) \(A=\sqrt{49}-2\sqrt{36}+3\sqrt{4}\)

\(A=7-2.6+3.2\)

\(A=7-12+6\)

\(A=1\)

\(b)\) \(B=\frac{1}{2}\sqrt{\frac{144}{225}}-7\sqrt{100}+4\sqrt{\frac{361}{400}}\)

\(B=\frac{1}{2}.\frac{4}{5}-7.10+4.\frac{19}{20}\)

\(B=\frac{2}{5}-70+\frac{19}{5}\)

\(B=\frac{-329}{5}\)

Chúc bạn học tốt ~ 

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:
a)

\(\sqrt{144}.\sqrt{\frac{49}{69}}\sqrt{0,01}=12.\frac{7}{\sqrt{69}}.0,1=\frac{8,4}{\sqrt{69}}=\frac{42\sqrt{69}}{345}\)

b)

\(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}=\sqrt{0,5^2}-\sqrt{15^2}+\sqrt{1,5^2}\)

\(=0,5-15+1,5=-13\)

c)

\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)

\(=\frac{72}{\sqrt{36}}-3\sqrt{16}=\frac{72}{6}-3.4=12-12=0\)

1. Áp dụng quy tắc khai phương một thương, hãy tính: a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\) d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\) 2. Tính: a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) ...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)

d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)

2. Tính:

a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)

c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)

4. Khẳng định nào sau đây là đúng?

A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)

5. Tính.

a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)

6. So sánh

a, So sánh \(\sqrt{144-49}\)\(\sqrt{144}-\sqrt{49}\);

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

3
13 tháng 11 2018

1

a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)

13 tháng 11 2018

tương tự lm nốthehe

26 tháng 8 2018

bài 1 đúng\(\sqrt{\dfrac{49}{9}}=\dfrac{7}{3}\)

bài 2 dùng máy tính bỏ túi hoặc

a) giả sử: \(6< \sqrt{37}\)

\(\Leftrightarrow\) 62 < (\(\sqrt{37}\))2

\(\Leftrightarrow\) 36 < 37(luôn đúng)

Vậy 6 < \(\sqrt{37}\)

b), c) tương tự

26 tháng 8 2018

bài 3

a) đúng

b) sai

bài yêu cầu Cm không dúng máy tính thì làm như bài 2