Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a+13b3a−7b=2c+13d3c−7d⇒2a+13b2c+13d=3a−7b3c−7d (1)
Nhân tư và mẫu vế trái (1) với 3 và vế phải với 13 ta được:
2a+13b2c+13d=14a+91b14c+91d=39a−91b39c−91d
=(14a+91b)+(39a−91b)(14c+91d)+(39c−91d)=53a53c=ac (2)
Nhân tử và mẫu vế trái (1) với 3 và vế phải với 2 ta được:
2a+13b2c+13d=6a+39b6c+39d=6a−14b6c−14d=53b53d=bd (3)
Từ (2) và (3) suy ra :
Điền các kí hiệu ( thuộc,không thuộc,tập hợp con ) thích hợp
a) √25 \(\in\)N c) Q \(\subset\) R
b)0 \(\notin\) I d) 0 \(\in\) R
e) 1 34 \(\in\)Z g) 0,13 \(\notin\) I
2,
2. Trong các khẳng định sau,khẳng định nào đúng,,khẳng định nào sai ?
a) Tập hợp các sô hữu tỉ gồm các số hữu tỉ dương và các số hữu tỉ âm Đ
b, S
d, Đ
3
Gọi 3 cạnh tam giác lần lượt là x,y,z
Theo bài ra ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)và x+y +z = 24
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{24}{12}=2\)
\(\Rightarrow\dfrac{x}{3}=2\Rightarrow x=6\)
\(\dfrac{y}{4}=2\Rightarrow y=8\)
\(\dfrac{z}{5}=2\Rightarrow z=10\)
Vậy 3 cạnh của tam giác lần lượt là 6,8,10
Câu 1:
(-4x2y).(-xy3)
=[-4.(-1)].(x2yxy3)
=4x3y4
Câu 2:
Thay x= -1;y=2 vào đa thức P ta có:
P=(-1)2.2+2.( -1).2+3=1
Vậy 1 là giá trị đa thức P tại x= -1;y=2
Câu 3:
[4x2y+( -8x2y)]= -4x2y
Bạn tự vẽ hình nha
a.
BA = BE (gt)
=> Tam giác BAE cân tại B
- Tam giác HAE vuông tại H có:
HAE + HEA = 900
=> HAE = 900 - HEA
- Ta có:
CAE + EAB = 900
=> CAE = 900 - EAB
mà HEA = EAB (tam giác BAE cân tại B)
=> HAE = CAE
b.
Xét tam giác HAE vuông tại H và tam giác KAE vuông tại K có:
HAE = KAE (theo câu a)
AE là cạnh chung
=> Tam giác HAE = Tam giác KAE (cạnh huyền - góc nhọn)
c.
AH = AK (tam giác HAE = tam giác KAE)
Chúc bạn học tốt
a)BA = BE (gt)
=> Tam giác BAE cân tại B
Tam giác AHE vuông tại H có:
HAE + HEA = 900
=> HAE = 900 - HEA (1)
Ta có:
BAE + EAC = 900
=> EAC = 900 - BAE (2)
Từ (1) và (2), ta có:
HAE = 900 - HEA
EAC = 900 - BAE
Mà HEA = BAE (tam giác BAE cân tại A)
=> HAE = EAC
b)Xét tam giác HAE vuông tại H và tam giác KAE vuông tại K:
HAE = KAE (theo câu a)
AE là cạnh chung
=> Tam giác HAE = Tam giác KAE (cạnh huyền - góc nhọn)
c)Vì AH = AK (Tam giác HAE = Tam giác KAE)
\(\left(x+5\right)\left(x-2\right)\left(x+4\right)\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+5=0\\x-2=0\\x+4=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\\x=-4\\x=3\end{array}\right.\)
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+cd< bc+dc\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)
\(ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)
Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Lại có :
\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
Đặt lần lượt x=a+b ; y=b+c; z=c+a
Thì ta có: a=\(\dfrac{x+z-y}{2}\);b=\(\dfrac{x+y-x}{2}\);c=\(\dfrac{y+z-x}{2}\)
Ráp vào BT ban đầu ta có:
\(\dfrac{z+x-y}{2y}\)+\(\dfrac{x+y-z}{2z}\)+\(\dfrac{y+z+x}{2x}\)=\(\dfrac{x+z-y}{\dfrac{2}{ }y}+\dfrac{x+y-z}{\dfrac{2}{z}}+\dfrac{y+z-x}{\dfrac{2}{x}}\)
Đến đây bạn đặt \(\dfrac{1}{2}\) chung ở vế trái sau đó chuyển vế là tính được nha