Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3}{5}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\frac{3}{5}-\frac{3}{5}-x=\frac{2}{7}\)
\(-x=\frac{2}{7}\)
\(\Rightarrow x=-\frac{2}{7}\)
b, \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\frac{1}{7}:x=\frac{3}{14}-\frac{3}{7}=\frac{3}{14}-\frac{6}{14}=-\frac{3}{14}\)
\(x=\frac{1}{7}:-\frac{3}{14}=-\frac{2}{3}\)
ta có \(1+\frac{x+5}{1995}+1+\frac{x+4}{1996}+1+\frac{x+3}{1997}=1+\frac{x+1995}{5}+1+\frac{x+1996}{4}+1+\frac{x+1997}{3}\)
\(=\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}=\frac{x+2000}{5}+\frac{x+2000}{4}+\frac{x+2000}{3}\)
\(=\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\right)=\left(x+2000\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\) (1)
Xét \(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\ne\frac{1}{5}+\frac{1}{4}+\frac{1}{3}vàx+2000=x+2000\) (2)
từ \(\left(1\right)\Leftrightarrow x+2000=0\) ( để (1) là đúng )
\(\Rightarrow x=2000\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Câu 2 đây:
\(|x^2+|x-1||=x^2+2\)
\(\Rightarrow\orbr{\begin{cases}x^2+\left|x-1\right|=x^2+2\\x^2+\left|x-1\right|=-x^2-2\left(l\right)\end{cases}}\)
\(\Rightarrow\left|x-1\right|=2\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
a) \(M=\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+0,5}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)
\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{2}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\frac{2012}{2013}\)
\(=\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{2\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\right):\frac{2012}{2013}\)
\(=\left(\frac{2}{7}-\frac{2}{7}\right):\frac{2012}{2013}\)
\(=0\)
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
=> \(\frac{x-1}{1995}+1-1-\frac{x+3}{1991}=\frac{x+7}{1987}+1-1-\frac{x+11}{1983}\)
=> \(\left(\frac{x-1}{1995}+1\right)-\left(1+\frac{x+3}{1991}\right)=\left(\frac{x+7}{1987}+1\right)-\left(1+\frac{x+11}{1983}\right)\)
=> \(\frac{x+1994}{1995}-\frac{x+1994}{1991}=\frac{x+1994}{1987}-\frac{x+1994}{1983}\)
=> \(\left(x+1994\right)\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)=0\)
=>x + 1994 = 0 Vì \(\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)\ne0\)
=> x = -1994