Tìm \(x,y\in Z\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được

10 tháng 8 2015

3xy - 5x - 2y = 3 

x(3y-5) - \(\frac{2}{3}y.3+\frac{2}{3}.5\)  = 3 + 10/3  

=> x(3y-5) - 2/3 (3y-5) = 19/3 

=>  ( x- 2/3)(3y - 5 ) = 19/3 

=> 3 ( x - 2/3 )(3y - 5 ) = 19/3 * 3 

=> ( 3x - 2/3.3 )(3y - 5 ) = 19 

=> ( 3x- 2 )( 3y - 5) = 19 

MÀ 19 = 1.19 = (-1). (-19)= 19.1 = (-19).(-1)

(+) 3x - 2 = 19 và  3y - 5 = 1 

=> 3x = 21 và 3y  \= 6 

=> x = 7  và y = 2 

Lmf tiếp 

10 tháng 8 2015

clink vào câu hỏi tương tự                  

7 tháng 8 2015

Phân tích thành nhân tử:

\(pt\Leftrightarrow x\left(3y-5\right)-\frac{2}{3}\left(3y-5\right)-\frac{10}{3}=3\)

\(\Leftrightarrow\left(3y-5\right)\left(x-\frac{2}{3}\right)=\frac{10}{3}+3\)

\(\Leftrightarrow\left(3y-5\right)\left(3x-2\right)=10+9=19\)

Đến đây dễ rồi.

a: \(B=\left(\dfrac{x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{10}{5\left(x+2\right)}+\dfrac{1}{x-2}\right):\dfrac{x^2-4+6-x^2}{x-2}\)

\(=\left(\dfrac{1}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x+2}+\dfrac{1}{x-2}\right):\dfrac{2}{x-2}\)

\(=\dfrac{1-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2}=\dfrac{-x+7}{2\left(x+2\right)}\)

b: Ta có: |x|=1/2

=>x=1/2 hoặc x=-1/2

Thay x=1/2 vào B, ta được:

\(B=\dfrac{-\dfrac{1}{2}+7}{2\left(\dfrac{1}{2}+2\right)}=\dfrac{13}{10}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{\dfrac{1}{2}+7}{2\left(-\dfrac{1}{2}+2\right)}=\dfrac{5}{2}\)

13 tháng 12 2015

\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)

b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}

                                                           hoặc (2y+3)2 =3y -1 =>

                                                           hoặc   (2y+3)2 =-3y +1  =>

c) B>/1  

+Nếu 2y+3 >0 hay y> -3/2 

  => 3y -1 > 2y+3 => y >4  => y thuộc { 5;6;7...}

+ Nếu  2y+3<0 hay y < -3/2

=> 3y -1 < 2y+3 => y <4  => y thuộc { -2;-3;-4.....}

8 tháng 8 2018

a) \(2x+2y\)

\(=2\left(x+y\right)\)

b) \(5x+20y\)

\(=5\left(x+4y\right)\)

c) \(6xy-30y\)

\(=6y\left(x-5\right)\)

d) \(5x\left[x-110-10y\left(x-11\right)\right]\)

\(=5x\left(x-110-10xy+110\right)\)

\(=5x\left(x-10xy\right)\)

\(=5x^2\left(1-10y\right)\)

e) \(x^3-4x^2+x\)

\(=x\left(x^2-4x+1\right)\)

f) \(x\left(x+y\right)-\left(2x+2y\right)\)

\(=x\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-2\right)\)

h) \(5x\left(x-2y\right)+2\left(2y-x\right)\)

\(=5x\left(x-2y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\left(5x-2\right)\)

i) \(x^2y^3-\dfrac{1}{2}x^4y^8\)

\(=x^2y^3\left(1-\dfrac{1}{2}xy^5\right)\)

j) \(a^2b^4+a^3b-abc\)

\(=ab\left(ab^3+a^2-c\right)\)

8 tháng 8 2018

a, 2x + 2y = 2(x + y)

b, 5x + 20y = 5x + 4.5y = 5(x + 4y)

c, 6xy - 30y = 6xy - 5.6y = 6y(x - 5)