Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 phần cần chia của số 480 lần lượt là x,y,z
Theo bài ra ta có:
x+y+z=480 và \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{480}{10}=48\)
Từ \(\frac{x}{2}=48\)=> x=48.2=96
\(\frac{y}{3}=48\)=> x= 48.3=144
\(\frac{z}{5}=48\)=> z=48.5 =240
Vậy 3 phần cần chia của số 480 lần lượt là 96,144,240
b, ~> Như câu a
Tick cho mk nha
Bạn Moon_Phạm trình bày chi tiết phần b được ko? Mình đang cần lắm! (Ngay bây giờ!)
gọi 3 phần được chia của M lần lượt là: x,y,z
đổi: 0,5 = 1/2
\(1\frac{2}{3}=\frac{5}{3}\)
\(2\frac{1}{4}=\frac{9}{4}\)
ta có: \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{5}{3}}=\frac{z}{\frac{9}{4}}=\frac{x^2}{\left(\frac{1}{2}\right)^2}=\frac{y^2}{\left(\frac{5}{3}\right)^2}=\frac{z^2}{\left(\frac{9}{4}\right)^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{\left(\frac{1}{2}\right)^2}=\frac{y^2}{\left(\frac{5}{3}\right)^2}=\frac{x^2}{\left(\frac{9}{4}\right)^2}=\frac{x^2+y^2+z^2}{\left(\frac{1}{2}\right)^2+\left(\frac{5}{3}\right)^2+\left(\frac{9}{4}\right)^2}=\frac{4660}{\frac{1165}{144}}=576\)
\(\frac{x^2}{\left(\frac{1}{2}\right)^2}=576\Rightarrow x=\sqrt{\left(576\cdot\left(\frac{1}{2}\right)^2\right)}=12\) và \(x=-12\)
\(\frac{y^2}{\left(\frac{5}{3}\right)^2}=576\Rightarrow y=\sqrt{\left(576\cdot\left(\frac{5}{3}\right)^2\right)}=40\) và \(y=-40\)
\(\frac{z^2}{\left(\frac{9}{4}\right)^2}=576\Rightarrow z=\sqrt{\left(576\cdot\left(\frac{9}{4}\right)^2\right)}=54\) và \(z=-54\)
vậy số M = 12+40+54=106
và số M = -12 + (-40) + (-54) = -106
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230