Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
a) Áp dụng định lý Pytago vào `\triangleAMN` vuông tại `A`, ta có:
`AN^2 =MN^2 -AM^2 <=>AN^2 =37^2 -12^2 <=>AN^2 =1369-144=1225<=>AN=35cm`
Ta có: `AM<AN<MN=>\hat{N}<\hat{M}<\hat{A}`
b) Xét `\triangleABI` và `\triangleNBI`, ta có:
`BI` chung
`AI=NI`
`\hat{AIB}=\hat{BIN}=90^o`
`=>\triangleABI=\triangleNBI`
c) Ta có:
`BI` vuông góc `AN`
`AM` vuông góc `AN`
\(\Rightarrow BI//AM\)
Mà `I` là trung điểm `AN`
`=>B` là trung điểm `MN`
`=>NB=1/2 MN`
Xét `\triangleACN`, ta có:
`NB` và `CI` là đường trung tuyến mà đều đi qua `D`
`=>D` là trọng tâm
`=>ND=2/3 NB`
Mà `NB=MB`
`=>ND=1/3 MN`
`=>MN=3ND`
Hình tự túc, vẽ khó quá.
a) ACB^ = ECN^ (đđ)
Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)
=> ABC^ = ECN^
Xét \(\Delta\)BDM và \(\Delta\)CEN :
BDM^ = CEN^ = 90o
BD = CE
ABC^ = CEN^
=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b) MD _|_ BC; NE_|_ BC => MD // NE
=> DMI^ = ENI^ (sole trong)
Xét \(\Delta\)DMI và \(\Delta\)ENI:
MDI^ = NEI^ = 90o
MD = EN (cmt)
DMI^ = ENI (cmt)
=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)
=> IM = IN (1)
Vì I là giao điểm của MN và BC nên I nằm trên MN (2)
Từ (1) và (2) => I là trung điểm của MN
c) Xét \(\Delta\)ABO và \(\Delta\)ACO:
AO chung
BAO^ = CAO^
AB = AC
=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)
d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)
a: Xét ΔAMN và ΔACB có
AM=AC
\(\widehat{MAN}=\widehat{CAB}\)(hai góc đối đỉnh)
AN=AB
Do đó: ΔAMN=ΔACB
b: Ta có: ΔAMN=ΔACB
=>\(\widehat{AMN}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NM//BC
c: Sửa đề: ME=CD
Xét ΔMDA vuông tại D và ΔCEA vuông tại E có
AM=AC
\(\widehat{MAD}=\widehat{CAE}\)(hai góc đối đỉnh)
Do đó: ΔMDA=ΔCEA
=>DA=EA
Xét ΔMAE và ΔCAD có
AM=AC
\(\widehat{MAE}=\widehat{CAD}\)(hai góc đối đỉnh)
AE=AD
DO đó:ΔMAE=ΔCAD
=>ME=CD