Cho hình thang cân ABC,AB//CD VÀ AB<CD,2 cạnh bên AD,BC kéo dài cât nhau tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

cách 2, câu b/

Gọi giao của AC và BD là I, chứng minh được DI= CI

mà ED =CF 

=> IE= IF

mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD

10 tháng 7 2019

cách 1, câu b/

Gọi N là giao EF và BC

dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng

>>> đpcm

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

2 tháng 4 2020

Đáp án:

Giải thích các bước giải:

a, ta có tỉ lệ \(\frac{AM}{AB}\)\(\frac{3}{3+2}\)\(\frac{3}{5}\)

\(\frac{AN}{AC}\)\(\frac{7,5}{7,5+5}\)\(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)\(\frac{AN}{AC}\)suy ra đpcm

b ) vì MN//BC nên \(\frac{MK}{BI}\)\(\frac{NK}{CT}\)\(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN