\( A=\sqrt{3-2x^2}\)
\(B=\sqrt{-9x^2+6x+3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Giải PT

a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)

\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(12\sqrt{x} = 3\)

\(\Leftrightarrow\) \(\sqrt{x} = 4 \)

\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)

\(\Leftrightarrow\) \(x=16\)

b) \(\sqrt{x^2-2x-1} - 3 =0\)

\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)

\(\Leftrightarrow\) \(|x-1|=3\)

* \(x-1=3\)

\(\Leftrightarrow\) \(x=4\)

* \(-x-1=3\)

\(\Leftrightarrow\) \(-x=4\)

\(\Leftrightarrow\) \(x=-4\)

c) \(\sqrt{4x^2+4x+1} - x = 3\)

<=> \(\sqrt{(2x+1)^2} = 3+x\)

<=> \(|2x+1|=3+x\)

* \(2x+1=3+x\)

<=> \(2x-x=3-1\)

<=> \(x=2\)

* \(-2x+1=3+x\)

<=> \(-2x-x = 3-1\)

<=> \(-3x=2\)

<=> \(x=\dfrac{-2}{3}\)

d) \(\sqrt{x-1} = x-3\)

<=> \(\sqrt{(x-1)^2} = (x-3)^2\)

<=> \(|x-1| = x^2-2.x.3+3^2\)

<=> \(|x-1| = x-6x+9\)

<=> \(|x-1| = -5x+9\)

* \(x-1= -5x+9\)

<=> \(x+5x = 9+1\)

<=> \(6x=10\)

<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)

* \(-x-1 = -5x+9\)

<=> \(-x+5x = 9+1\)

<=> \(4x = 10\)

<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)

22 tháng 9 2019

mình nghĩ câu b \(\left(x-1\right)^2\)luôn lớn hơn 0 nên chắc không cần chia ra hai trường hợp nhỉ ?

24 tháng 11 2018

\(\sqrt{1-4x+4x^2}=5\). Bình phương hai vế,ta có:

\(PT\Leftrightarrow1-4x+4x^2=25\)

\(\Leftrightarrow-4x+4x^2=24\Leftrightarrow4\left(-x+x^2\right)=24\)

\(\Leftrightarrow x^2-x=6\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\) 

21 tháng 8 2017

đầu tiien, tìm đk của x ở dưới căn, tiếp theo, bình phương 2 vế ,thì vế trái sẽ mất dấu căn thức, còn vế phải thì tự tính. Khi mất dấu căn, bài toán sẽ trở nên bt, tính ra kết quả, đối chiếu đk tìm đc ở trên và kết luận. 4 bài trên , bài nào cx có thể lm như thế !

9 tháng 7 2018

a/ \(\sqrt{2x-3}=\sqrt{x-1}ĐK:x\ge\dfrac{3}{2}\)

\(\Leftrightarrow2x-3=x-1\Leftrightarrow x=-1+3=2\)(tm)

b/ \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)ĐK: x≥1

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow\sqrt{x-1}\left(6-3-2+1\right)=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\Leftrightarrow\sqrt{x-1}=8\Leftrightarrow x-1=64\Leftrightarrow x=65\)

(tm)

c/ \(\sqrt{2x+3}+\sqrt{2x+2}=1\)ĐK: x>=-1

\(\Leftrightarrow\sqrt{2x+3}=1-\sqrt{2x+2}\)

\(\Leftrightarrow2x+3=2x+2-2\sqrt{2x+2}+1\)

\(\Leftrightarrow2\sqrt{2x+2}=0\Leftrightarrow\sqrt{2x+2}=0\Leftrightarrow2x+2=0\Leftrightarrow x=-1\left(tm\right)\)

d/ \(\sqrt{4x^2+4x+1}=3\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy....

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

12 tháng 11 2016

a/ Điều kiện b tự làm nhé

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)

Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành

\(a-b=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)

Tới đây thì đơn giản rồi b làm tiếp nhé

24 tháng 9 2018

b)\(\sqrt{25x^2}=19\)

\(\Leftrightarrow5x=19\)

\(\Leftrightarrow x=\dfrac{19}{5}\)

24 tháng 9 2018

c)\(\sqrt{x-7}+3=0\)

\(\Leftrightarrow\sqrt{x-7}=-3\)

\(\Leftrightarrow x-7=9\)

\(\Leftrightarrow x=16\)

25 tháng 10 2018

Bài 1

a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a

b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3

Bài 2

a) √2x-3 = 7

⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26

c) √16x - √9x = 2

⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4

Bài 3

a) √(2-√5)2 = l 2-√5 l = √5-2

b) (a - 3)2 + (a - 9)

= a2 - 6a + 9 + a - 9 = a2 - 5a

c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)

=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

=\(\dfrac{-3\sqrt{x}+9}{x-9}\)

25 tháng 10 2018

mình cảm ơn bạn nhiều lắm

6 tháng 12 2019

a.\(\sqrt{\left(2x-1\right)^2}-2x+3\)

\(=2x-1-2x+3=2\)(vì x\(\ge\)1/2 nên 2x-1\(\ge\)0)

b.\(B=\sqrt{\frac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}}\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{\frac{33+11\sqrt{5}}{11}}\left(\sqrt{10}-\sqrt{2}\right)=\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)=\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)