Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ Oz//Ax thì \(\widehat{AOz}=180-\widehat{xAO}=50\\ BOz=AOB-AOz=120-50=70\)
suy ra BOz và OBy bù nhau nên Oz//By
mà Oz//Ax nên ta có đpcm
tôi đã thử lòng các bạn nhưng ko có ai trả lời thì tớ giải cho nhé.
bài làm: Đặt \(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow\)x =1998k ; y =1999k ; z =2000k
ta có : \(\left(x-z\right)^3=\left(1999k-2000k\right)^3\) = \(\left[k\cdot\left(1999-2000\right)\right]^3\)= \(k^3\cdot\left(-8\right)\) (1)
\(8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\) = \(8\cdot\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)
= \(8\cdot\left[k\cdot\left(1999-2000\right)\right]^2\cdot\left[k\cdot\left(1999-2000\right)\right]\)
= \(8\cdot k^2\cdot1\cdot k\cdot\left(-1\right)=k^3\cdot\left(-8\right)\) (2)
từ (1)và (2) \(\Rightarrow\left(x-z\right)^3=8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\)
Có \(x=by+cz\)
=> \(x\left(1+a\right)=ax+x=ax+by+cz\)
=> \(\frac{1}{1+a}=\frac{x}{ax+by+cz}\)
=> \(\frac{a}{1+a}=\frac{ax}{ax+by+cz}\)
Có \(y=cz+ax\)
=> \(y\left(1+b\right)=by+y=by+cz+ax=ax+by+cz\)
=> \(\frac{1}{1+b}=\frac{y}{ax+by+cz}\)
=> \(\frac{b}{1+b}=\frac{by}{ax+by+cz}\)
Có \(z=ax+by\)
=> \(z\left(1+c\right)=cz+z=cz+ax+by=ax+by+cz\)
=> \(\frac{1}{1+c}=\frac{z}{ax+by+cz}\)
=> \(\frac{c}{1+c}=\frac{cz}{ax+by+cz}\)
=> \(M=\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=\frac{ax}{ax+by+cz}+\frac{by}{ax+by+cz}+\frac{cz}{ax+by+cz}\)
\(=\frac{ax+by+cz}{ax+by+cz}=1\)
Vậy giá trị của M là 1
a/
\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)
Mà Cz//Ax (gt)
=> Cz//By (cùng // với Ax)
b/
\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)
Ta có
Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)
c/
\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)
Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)
Xét tg vuông ACD có
\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+) Xét \(a+b+c+d=0\)
Suy ra :
\(a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(c+a=-\left(b+d\right)\)
\(d+a=-\left(b+c\right)\)
Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)
\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(M=-4\)
+) Xét \(a+b+c+d\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)
Do đó :
\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)
\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)
\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)
\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)
Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)
\(\Leftrightarrow\)\(a=b=c=d\)
\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
\(\Rightarrow\)\(M=1+1+1+1=4\)
Vậy \(M=-4\) hoặc \(M=4\)
Chúc bạn học tốt ~
Ta có :
\(2a+2b+2c=by+cz+ax+cz+ax+by\)
\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)
\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)
+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)
\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)
+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)
\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)
+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)
\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(M=\frac{a+b+c}{a+b+c}=1\)
Vậy \(M=1\)
Chúc bạn học tốt ~
Kẻ Mz // Ax
Suy ra Mz cũng // By
\(\widehat{MAx}+\widehat{AMz}=180\) ( hai góc trong cùng phía )
\(\widehat{BMz}+\widehat{MBy}=180\) ( hai góc trong cùng phía )
Mà \(\widehat{AMz}+\widehat{BMz}=\widehat{AMB}=110\)
\(\widehat{MAx}+\widehat{AMz}+\widehat{BMz}+\widehat{MBy}=180+180\)
\(\widehat{MAx}+110+130=360\)
\(\widehat{MAx}+240=360\)
\(\widehat{MAx}=120\)